Reading List
- Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow : Aurélien Géron
- Python for Data Analysis : Wes McKinney
- Bad Data : Q. Ethan McCallum
- Best Practices in Data Cleaning : Jason W. Osborne
Free Books Taken From Here
- Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies - Bernd Carsten Stahl (PDF)
- Artificial Intelligence: Foundations of Computational Agents (2010), 1st Edition - David L. Poole, Alan K. Mackworth @ Cambridge University Press (HTML)
- Artificial Intelligence: Foundations of Computational Agents (2017), 2nd Edition - David L. Poole, Alan K. Mackworth @ Cambridge University Press (HTML, Slides)
- Getting Started with Artificial Intelligence , 2nd Edition - Tom Markiewicz, Josh Zheng (PDF)
- Graph Representational Learning Book - William L. Hamilton (HTML, PDF)
- Introduction to Autonomous Robots - Nikolaus Correll (PDF)
- On the Path to AI: Law’s prophecies and the conceptual foundations of the machine learning age - Thomas D. Grant, Damon J. Wischik (PDF)
- Probabilistic Programming & Bayesian Methods for Hackers - Cam Davidson-Pilon (HTML, Jupyter Notebook)
- The Quest for Artificial Intelligence: A History of Ideas and Achievements - Nils J. Nilsson (PDF)
- Computer Vision - Dana Ballard, Chris Brown
- Computer Vision: Algorithms and Applications - Richard Szeliski
- Computer Vision: Models, Learning, and Inference - Simon J.D. Prince
- DALLE-E 2 prompt book - Dallery.Gallery, Guy Parson(PDF)
- Programming Computer Vision with Python - Jan Erik Solem
- A Programmer's Guide to Data Mining - Ron Zacharski (Draft)
- Data Jujitsu: The Art of Turning Data into Product (email address requested, not required)
- Data Mining Algorithms In R - Wikibooks
- Elements of Data Science - Allen B. Downey
- Fundamentals of Data Visualization - Claus O. Wilke (HTML)
- Hands-On Data Visualization - Jack Dougherty, Ilya Ilyankou (HTML)
- Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users (PDF)
- Introduction to Data Science - Jeffrey Stanton
- Mining of Massive Datasets - Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman (PDF)
- Probability and Statistics with Examples using R - Siva Athreya, Deepayan Sarkar, Steve Tanner (HTML) (:construction: in process)
- School of Data Handbook
- Statistical inference for data science - Brian Caffo
- The Ultimate Guide to 12 Dimensionality Reduction Techniques (with Python codes) - Pulkit Sharma
- Theory and Applications for Advanced Text Mining
- Database Design – 2nd Edition - Adrienne Watt, Nelson Eng @ BCcampus Open Pressbooks (HTML, PDF, EPUB, Kindle)
- Database Design Succinctly - Joseph D. Booth (HTML, PDF, EPUB, MOBI)
- Database Explorations - C.J. Date, Hugh Darwen (PDF)
- Database Fundamentals - Neeraj Sharma et al. (PDF)
- Databases, Types, and The Relational Model: The Third Manifesto - C.J. Date, Hugh Darwen (PDF)
- Foundations of Databases
- Readings in Database Systems, 5th Ed.
- Temporal Database Management - Christian S. Jensen
- The Theory of Relational Databases
- A Brief Introduction to Machine Learning for Engineers - Osvaldo Simeone (PDF)
- A Brief Introduction to Neural Networks
- A Comprehensive Guide to Machine Learning - Soroush Nasiriany, Garrett Thomas, William Wang, Alex Yang (PDF)
- A Course in Machine Learning (PDF)
- A First Encounter with Machine Learning - Max Welling (PDF) (:card_file_box: archived)
- A Selective Overview of Deep Learning - Fan, Ma, Zhong (PDF)
- Algorithms for Reinforcement Learning - Csaba Szepesvári (PDF)
- An Introduction to Statistical Learning - Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (PDF)
- Approaching Almost Any Machine Learning Problem - Abhishek Thakur (PDF)
- Bayesian Reasoning and Machine Learning
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Deep Learning for Coders with Fastai and PyTorch - Jeremy Howard, Sylvain Gugger (Jupyter Notebooks)
- Dive into Deep Learning
- Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises - James L. McClelland
- Foundations of Machine Learning, Second Edition - Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar
- Free and Open Machine Learning - Maikel Mardjan (HTML)
- Gaussian Processes for Machine Learning - Carl Edward Rasmussen, Christopher K.I. Williams
- IBM Machine Learning for Dummies - Judith Hurwitz, Daniel Kirsch
- Information Theory, Inference, and Learning Algorithms - David J.C. MacKay
- Interpretable Machine Learning - Christoph Molnar
- Introduction to CNTK Succinctly - James McCaffrey
- Introduction to Machine Learning - Amnon Shashua
- Keras Succinctly - James McCaffrey
- Learn Tensorflow - Jupyter Notebooks
- Learning Deep Architectures for AI - Yoshua Bengio (PDF)
- Machine Learning
- Machine Learning for Data Streams - Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer
- Machine Learning from Scratch - Danny Friedman (HTML, PDF, Jupyter Book)
- Machine Learning, Neural and Statistical Classification - D. Michie, D.J. Spiegelhalter, C.C. Taylor
- Machine Learning with Python - Tutorials Point (HTML, PDF)
- Mathematics for Machine Learning - Garrett Thomas (PDF)
- Mathematics for Machine Learning - Marc Peter Deisenroth, A Aldo Faisal, Cheng Soon Ong
- Neural Networks and Deep Learning
- Practitioners guide to MLOps - Khalid Samala, Jarek Kazmierczak, Donna Schut (PDF)
- Probabilistic Machine Learning - An Introduction - Kevin P. Murphy (PDF)
- Probabilistic Models in the Study of Language (Draft, with R code)
- Python Machine Learning Projects - Lisa Tagliaferri, Brian Boucheron, Michelle Morales, Ellie Birkbeck, Alvin Wan (PDF, EPUB, Kindle)
- Reinforcement Learning: An Introduction - Richard S. Sutton, Andrew G. Barto (PDF)
- Speech and Language Processing (3rd Edition Draft) - Daniel Jurafsky, James H. Martin (PDF)
- The Elements of Statistical Learning - Trevor Hastie, Robert Tibshirani, and Jerome Friedman
- The LION Way: Machine Learning plus Intelligent Optimization - Roberto Battiti, Mauro Brunato (PDF)
- The Mechanics of Machine Learning - Terence Parr, Jeremy Howard
- The Python Game Book - Horst Jens (:card_file_box: archived)
- Top 10 Machine Learning Algorithms Every Engineer Should Know - Binny Mathews, Omair Aasim
- Understanding Machine Learning: From Theory to Algorithms - Shai Shalev-Shwartz, Shai Ben-David
- A Computational Introduction to Number Theory and Algebra - Victor Shoup
- A Computational Logic (1979) - Robert S. Boyer, J Strother Moore (PDF)
- A First Course in Complex Analysis - Matthias Beck, Gerald Marchesi, Dennis Pixton, Lucas Sabalka
- A First Course in Linear Algebra - Rob Beezer
- A Friendly Introduction to Mathematical Logic - Christopher C. Leary, Lars Kristiansen
- A Gentle Introduction to the Art of Mathematics - Joseph E. Fields
- A Programmer's Introduction to Mathematics - Jeremy Kun
- Abstract Algebra: Theory and Applications - Tom Judson
- Active Calculus - Matt Boelkins
- Advanced Algebra - Anthony W. Knapp (PDF)
- Algebra: Abstract and Concrete - Frederick Goodman
- Algebra: An Elementary Text-Book, Part I (1904) - G. Chrystal (PDF)
- Algebra: An Elementary Text-Book, Part II (1900) - G. Chrystal (PDF)
- Algebraic Topology - Allen Hatcher (PDF)
- An Infinite Descent into Pure Mathematics - Clive Newstead (PDF)
- An Introduction to the Theory of Numbers - Leo Moser (PDF)
- Analytic Geometry (1922) - Lewis Parker Siceloff, George Wentworth, David Eugene Smith (PDF)
- APEX Calculus - Gregory Hartman, Brian Heinold, Troy Siemers, and Dimplekumar Chalishajar
- Applied Combinatorics - Mitchel T. Keller, William T. Trotter
- Applied Discrete Structures - Alan Doerr, Kenneth Levasseur
- Basic Algebra - Anthony W. Knapp (PDF)
- Basic Analysis: Introduction to Real Analysis - Jiří Lebl
- Basics of Algebra, Topology, and Differential Calculus (PDF)
- Bayesian Methods for Hackers - Cameron Davidson-Pilon
- Beginning and Intermediate Algebra - Tyler Wallace
- Book of Proof - Richard Hammack (PDF)
- Calculus - Gilbert Strang
- Calculus I - Jerrold E. Marsden, Alan Weinstein
- Calculus in Context - James Callahan
- Calculus Made Easy - Silvanus P. Thompson (PDF)
- Calculus Volume 1 - Edwin Herman, Gilbert Strang (PDF)
- Calculus Volume 2 - Edwin Herman, Gilbert Strang (PDF)
- Calculus Volume 3 - Edwin Herman, Gilbert Strang (PDF)
- Category Theory for the Sciences - David I. Spivak (PDF)
- CK-12 Probability and Statistics - Advanced
- CLP-1 Differential Calculus - Joel Feldman, Andrew Rechnitzer, Elyse Yeager
- CLP-2 Integral Calculus - Joel Feldman, Andrew Rechnitzer, Elyse Yeager
- CLP-3 Multivariable Calculus - Joel Feldman, Andrew Rechnitzer, Elyse Yeager
- CLP-4 Vector Calculus - Joel Feldman, Andrew Rechnitzer, Elyse Yeager
- Collaborative Statistics
- College Trigonometry - Carl Stitz, Jeff Zeager (PDF)
- Combinatorics Through Guided Discovery - Kenneth Bogart
- Complex Analysis - George Cain
- Computational and Inferential Thinking. The Foundations of Data Science - Ani Adhikari, John DeNero, David Wagner
- Computational Geometry
- Computational Mathematics with SageMath - Paul Zimmermann, Alexandre Casamayou, Nathann Cohen, Guillaume Connan, et al. (PDF)
- Concepts & Applications of Inferential Statistics
- Convex Optimization - Stephen Boyd, Lieven Vandenberghe
- Coordinate Geometry (1911) - Henry Buchard Fine, Henry Dallas Thompson (PDF)
- Differential Equations - Paul Dawkins (PDF, use download menu to download)
- Differential Equations (1922) - H. B. Phillips (PDF)
- Discrete Mathematics: An Open Introduction - Oscar Levin
- Discrete Mathematics: First and Second Course - Edward A. Bender, S. Gill Williamson
- Elementary Differential Equations - William F. Trench (PDF)
- Elementary Differential Equations (with Boundary Value Problems) - William F. Trench
- Elementary Number Theory: Primes, Congruences, and Secrets - William Stein
- Elementary Real Analysis - Brian S. Thomson, Judith B. Bruckner, Andrew M. Bruckner
- Elements of Abstract and Linear Algebra - E. H. Connell
- Elements of Differential and Integral Calculus (1911) - William Anthony Granville (PDF)
- Essentials of Metaheuristics - Sean Luke
- First Course in Algebra (1910) - Herbert E. Hawkes, William A. Luby, Frank C. Touton (PDF)
- Foundations of Combinatorics with Applications - Edward A. Bender, S. Gill Williamson
- Foundations of Constructive Probability Theory - Yuen-Kwok Chan (PDF)
- Geometry with an Introduction to Cosmic Topology - Michael P. Hitchman
- Graph Theory
- How We Got from There to Here: A Story of Real Analysis - Robert Rogers, Eugene Boman
- Introduction to Modern Statistics - Mine Çetinkaya-Rundel, Johanna Hardin (HTML, PDF) (email address required for PDF)
- Introduction to Probability - Charles M. Grinstead, J. Laurie Snell (PDF)
- Introduction to Probability and Statistics Spring 2014
- Introduction to Proofs - Jim Hefferon
- Introduction to Real Analysis - William F. Trench
- Introduction to Statistical Thought - Michael Lavine
- Introductory Statistics for the Life and Biomedical Sciences - Julie Vu, David Harrington
- Kalman and Bayesian Filters in Python
- Knapsack Problems - Algorithms and Computer Implementations - Silvano Martello, Paolo Toth
- Lecture Notes of Linear Algebra - Dr. P. Shunmugaraj, IIT Kanpur (PDF)
- Lecture Notes on Linear Algebra - Dr. Arbind K Lal, Sukant Pati (PDF) (:construction: in process)
- Lies, Damned Lies, or Statistics: How to Tell the Truth with Statistics - Jonathan A. Poritz (PDF)
- Linear Algebra - David Cherney et al. (PDF)
- Linear Algebra - Jim Hefferon
- Linear Algebra Done Wrong - Sergei Treil
- Linear Algebra, Infinite Dimensions, and Maple - James Herod
- Linear Methods of Applied Mathematics - Evans M. Harrell II, James V. Herod
- Magic Squares and Cubes (1917) - W. S. Anderson (PDF)
- Math in Society - David Lippman
- Mathematical Analysis I - Elias Zakon
- Mathematical Discovery - Andrew M. Bruckner, Brian S. Thomson, Judith B. Bruckner
- Mathematical Logic - an Introduction (PDF)
- Mathematical Reasoning: Writing and Proof - Ted Sundstrom
- Mathematics, MTH101A - P. Shunmugaraj, IIT Kanpur
- Modern Statistics for Modern Biology - Susan Holmes, Wolfgang Huber
- Multivariable Calculus - George Cain, James Herod
- Non-Uniform Random Variate Generation - Luc Devroye (PDF)
- Notes on Diffy Qs - Jiří Lebl
- Number Theory - Holden Lee MIT
- Number Theory: In Context and Interactive - Karl-Dieter Crisman (HTML, PDF)
- Odds and Ends: Introducing Probability & Decision with a Visual Emphasis - Jonathan Weisberg
- Online Statistics Education - David Lane
- OpenIntro Statistics - David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel
- ORCCA: Open Resources for Community College Algebra - Portland Community College
- Ordinary Differential Equations - Wikibooks
- Paul's Online Notes: Algebra, Calculus I-III and Differential Equations - Paul Dawkins @ Lamar University
- Plane Geometry (1913) - George Wentworth, David Eugene Smith (PDF)
- Planes and Spherical Trigonometry (1915) - George Wentworth, David Eugene Smith (PDF)
- Precalculus - Carl Stitz, Jeff Zeager (PDF)
- Probability and Statistics Cookbook
- Probability and Statistics EBook
- Probability: Lectures and Labs - Mark Huber
- Recreations in Math - H. E. Licks (PDF)
- Sage for Undergraduates - Gregory Bard
- Second Course in Algebra - Herbert E. Hawkes, William A. Luby, Frank C. Touton (PDF)
- Seven Sketches in Compositionality: An Invitation to Applied Category Theory - Brendan Fong, David I. Spivak (PDF)
- Statistical Thinking for the 21st Century - Russell A. Poldrack
- Statistics Done Wrong - Alex Reinhart
- SticiGui - Philip Stark
- Tea Time Numerical Analysis - Leon Q. Brin
- The Open Logic Text - Open Logic Project (PDF)
- Think Bayes: Bayesian Statistics Made Simple - Allen B. Downey
- Think Stats: Probability and Statistics for Programmers - Allen B. Downey (using Python)
- Vector Calculus - Michael Corral
- Yet Another Introductory Number Theory Textbook - Jonathan A. Poritz (PDF)