Skip to content

AaronJny/nerual_style_change

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

此项目使用Python2.7+TensorFlow 1.4编写,环境太过古老,可能无法正常运行起来。

如有需要,请移步我使用Python 3.7 + TensorFlow 2.0重写的版本:

DeepLearningExamples/tf2-neural-style-transfer


使用VGG19迁移学习实现图像风格迁移

这是一个使用预训练的VGG19网络完成图片风格迁移的项目,使用的语言为python,框架为tensorflow。

给定一张风格图片A和内容图片B,能够生成具备A图片风格和B图片内容的图片C。

下面给出两个示例,风格图片都使用梵高的星夜:

风格图片

示例1:

网络上找到的一张风景图片。

内容图片:

内容图片1

生成图片:

生成图片1

示例2:

嗷嗷嗷,狼人嚎叫~

内容图片:

内容图片2

生成图片:

生成图片2

更多详情请移步博客https://blog.csdn.net/aaronjny/article/details/79681080


快速开始

1.下载预训练的vgg网络,并放入到项目的根目录中

模型有500M+,故没有放到GitHub上,有需要请自行下载。

下载地址:http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

2.选定风格图片和内容图片,放入项目根目录下的images文件夹中

在项目根目录下的images文件夹中,有两张图片,分别为content.jpgstyle.jpg,即内容图片和风格图片。

如果只是使用默认图片测试模型,这里可以不做任何操作。

如果要测试自定义的图片,请使用自定义的内容图片和/或风格图片替换该目录下的内容图片和/或风格图片,请保持命名与默认一致,或者在settings.py中修改路径及名称。

3.开始生成图片

运行项目中的train.py文件,进行训练。在训练过程中,程序会定期提示进度,并保存过程图片。

当训练结束后,保存最终生成图片。

所有生成的图片均保存在项目根目录下output文件夹中。

4.更多设置

settings.py文件中存在多种配置项,可根据需求进行配置。

About

使用VGG19迁移学习实现图像风格迁移。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages