Skip to content

A fork of the pysaliency repo which allows the number of samples pulled from the SALICON dataset to be limited. It was made to reduce the memory usage when training DeepGaze 3. Additionally, it fixes the `replace_initial_invalid_fixations` missing from the `get_mit1003_with_initial_fixation` function.

License

Notifications You must be signed in to change notification settings

Adrian-Samoticha/pysaliency

 
 

Repository files navigation

Pysaliency

test

Pysaliency is a python package for saliency modelling. It aims at providing a unified interface to both the traditional saliency maps used in saliency modeling as well as probabilistic saliency models.

Pysaliency can evaluate most commonly used saliency metrics, including AUC, sAUC, NSS, CC image-based KL divergence, fixation based KL divergence and SIM for saliency map models and log likelihoods and information gain for probabilistic models.

Pysaliency provides several important datasets:

  • MIT1003
  • MIT300
  • CAT2000
  • Toronto
  • Koehler
  • iSUN
  • SALICON (both the 2015 and the 2017 edition and each with both the original mouse traces and the inferred fixations)
  • FIGRIM
  • OSIE
  • NUSEF (the part with public images)

and some influential models:

  • AIM
  • SUN
  • ContextAwareSaliency
  • BMS
  • GBVS
  • GBVSIttiKoch
  • Judd
  • IttiKoch
  • RARE2012
  • CovSal

These models are using the original code which is often matlab. Therefore, a matlab licence is required to make use of these models, although quite some of them work with octave, too (see below).

Installation

You can install pysaliency from pypi via

pip install pysaliency

Quickstart

import pysaliency

dataset_location = 'datasets'
model_location = 'models'

mit_stimuli, mit_fixations = pysaliency.external_datasets.get_mit1003(location=dataset_location)
aim = pysaliency.AIM(location=model_location)
saliency_map = aim.saliency_map(mit_stimuli.stimuli[0])

plt.imshow(saliency_map)


auc = aim.AUC(mit_stimuli, mit_fixations)

If you already have saliency maps for some dataset, you can import them into pysaliency easily:

my_model = pysaliency.SaliencyMapModelFromDirectory(mit_stimuli, '/path/to/my/saliency_maps')
auc = my_model.AUC(mit_stimuli, mit_fixations)

Using Octave

pysaliency will fall back to octave if no matlab is installed. Some models might work with octave, e.g. AIM and GBVSIttiKoch. In Debian/Ubuntu you need to install octave, octave-image, octave-statistics, liboctave-dev.

These models and dataset seem to work with octave:

  • models
    • AIM
    • GBVSIttiKoch
  • datasets
    • Toronto
    • MIT1003
    • MIT300
    • SALICON

Dependencies

The Judd Model needs some libraries to work. In ubuntu/debian you need to install these packages: libopencv-core-dev, libopencv-flann-dev, libopencv-imgproc-dev, libopencv-photo-dev, libopencv-video-dev, libopencv-features2d-dev, libopencv-objdetect-dev, libopencv-calib3d-dev, libopencv-ml-dev, opencv2/contrib/contrib.hpp

About

A fork of the pysaliency repo which allows the number of samples pulled from the SALICON dataset to be limited. It was made to reduce the memory usage when training DeepGaze 3. Additionally, it fixes the `replace_initial_invalid_fixations` missing from the `get_mit1003_with_initial_fixation` function.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 58.4%
  • Jupyter Notebook 40.5%
  • Other 1.1%