Releases: AlexanderFabisch/gmr
Releases · AlexanderFabisch/gmr
1.6.1
1.6
- Fixes numerical issues in condition and expectation step
- Add oracle approximating shrinkage to handle singular covariances
- Add sklearn-compatible GaussianMixtureRegressor
- Faster batch prediction of means
- Accept lists where previously only numpy arrays were accepted
1.5.1
Installation works now without any dependencies.
1.5
Installation
- Changes
requires
toinstall_requires
insetup.py
- Adds optional requirements for examples, tests, and documentation
Documentation
- Links new API documentation in readme
- Documentation in example
plot_iris_from_sklearn.py
explains why the fit is bad. The purpose of this example is to show that we can initialize from a GMM of sklearn. - Documentation of how to contribute to the software (in readme)
Code
- Fixes deprecation warnings for NumPy type aliases
- Adds
GMM.extract_mvn
1.4
- Adds unscented transform to MVN
- Extend documentation in readme