This a practice for ML algorithms
from Trees import DecisionTree
tree = DecisionTree.DecisionTree()
tree.fit(X,y)
tree.predict(X)
from Trees import DecisionTree
tree = DecisionTree.RegressionTree()
tree.fit(X,y)
tree.predict(X)
from Trees.Ensamble import Ensamble
rf = Ensamble([DecisionTree.DecisionTree(max_depth=3, splitter='quantile'),
DecisionTree.DecisionTree(max_depth=3, splitter='quantile'),
DecisionTree.DecisionTree(max_depth=3, splitter='quantile')])
from Trees.Ensamble import Ensamble, RandomForest
rf = RandomForest(max_features=.05,n_estimator=30,max_depth = 3)
rf.fit(X,y)
from Trees.GradientBoost import GradientBoostTree
gbdt = GradientBoostTree(n_estimator=n_estimator,
learning_rate=5e1,max_depth=depth)
gbdt.fit(X,y)