Paper for: Axial Data Modeling with Collapsed Nonparametric Watson Mixture Models and Its Application to Depth Image Analysis
datas # container of data
result # container figure of dataset
config # the hyper parameters of dataset
model # dp-wmm model code
utils # some util function
train # training code
matplotlib ==3.1.1
numpy ==1.16.4
pandas ==0.23.2
scipy ==1.1.0
sklearn ==0.21.3
params:
-name dataset name
-lp Load hyper parameter or not
-verbose print information or not
-t truncation of model
-gamma stick hyper params
-mth the threshold of Cluster number
-m max iterations of training
example:
python train.py -name syn_data2 -lp 1 -verbose 1 -t 10 -gamma 1 -mth 0.01 -m 100
@InProceedings{YANG2020,
author="Yang, Lin; Liu, Yuhang and Fan, Wentao",
title="Axial Data Modeling with Collapsed Nonparametric Watson Mixture Models and Its Application to Depth Image Analysis",
booktitle="Pattern Recognition and Computer Vision",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="17--28",
}