-
Notifications
You must be signed in to change notification settings - Fork 0
License
Anjingkun/NIH-Bias-Detection
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# NIH-Bias-Detection - Team: Super2021 - Members: Yinghao Zhu, Jingkun An, Enshen Zhou, Hao Li, Haoran Feng ## Usage - `measure_disparity.py`: detect and evaluate the bias (prediction logits dependent) - `mitigate_disparity.py`: mitigate bias - `example_adult.ipynb`: an example tutorial that measures and mitigates disparity on adult census income dataset (AdultDataset) - `example_meps.ipynb`: an example tutorial that measures and mitigates disparity on clinical dataset (MEPSDataset19) ## Environment Setup Linux/Windows/MacOS with Python version >= 3.8 (We've tested on Ubuntu 18 and Debian 11) (Optional) Create a virtual environment with conda - Install with pip ``` conda create -n befair python=3.9 conda activate befair pip install -r requirements.txt ``` Or pull the docker image from link: https://hub.docker.com/r/tualatinx/befair Please follow the instructions in `datasets/README.md` to download the datasets. An easier way is to download from GitHub Releases and put them in `datasets/data/raw` folder Folder structure: ```bash datasets/ ├── data/ │ └── raw/ │ ├── adult/ │ │ ├── adult.data │ │ ├── adult.names │ │ ├── adult.test │ │ └── README.md │ ├── meps/ │ │ ├── h181.csv │ │ ├── h192.csv │ │ ├── generate_data.R │ │ └── README.md │ └── ... └── utils/ measure_disparity.py mitigate_disparity.py example_adult.ipynb example_meps.ipynb ```
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published