Paper: https://arxiv.org/pdf/1502.05700.pdf
- Add known data points in data/X.npy and data/Y.npy
- Specify function evaluator in evaluate method of data/func.py
- To run call main.py, specify: -i input_dimension (SCALAR) -o opt methd -ei function
Go to 'dngo/data/func_demo.py' and specify your function. Modify 'data/generator.py' to specify number of points generated Run 'dngo/data/generate.py', '''python generate.py'''. Now run 'dngo/demo.py', '''python demo.py -ARGS_HERE'''
- print gradients to see if alpha, beta, learning rate are reasonable
- EI performs well when both posterior mean and stdeviation are roughly no more than 1 order of magnitude apart
Test functions used for experimentation taken from:
https://en.wikipedia.org/wiki/Test_functions_for_optimization