====================================== pykalman
Welcome to pykalman, the dead-simple Kalman Filter, Kalman Smoother, and EM library for Python::
>>> from pykalman import KalmanFilter
>>> import numpy as np
>>> kf = KalmanFilter(transition_matrices = [[1, 1], [0, 1]], observation_matrices = [[0.1, 0.5], [-0.3, 0.0]])
>>> measurements = np.asarray([[1,0], [0,0], [0,1]]) # 3 observations
>>> kf = kf.em(measurements, n_iter=5)
>>> (filtered_state_means, filtered_state_covariances) = kf.filter(measurements)
>>> (smoothed_state_means, smoothed_state_covariances) = kf.smooth(measurements)
Also included is support for missing measurements::
>>> from numpy import ma
>>> measurements = ma.asarray(measurements)
>>> measurements[1] = ma.masked # measurement at timestep 1 is unobserved
>>> kf = kf.em(measurements, n_iter=5)
>>> (filtered_state_means, filtered_state_covariances) = kf.filter(measurements)
>>> (smoothed_state_means, smoothed_state_covariances) = kf.smooth(measurements)
And for the non-linear dynamics via the :class:UnscentedKalmanFilter
::
>>> from pykalman import UnscentedKalmanFilter
>>> ukf = UnscentedKalmanFilter(lambda x, w: x + np.sin(w), lambda x, v: x + v, transition_covariance=0.1)
>>> (filtered_state_means, filtered_state_covariances) = ukf.filter([0, 1, 2])
>>> (smoothed_state_means, smoothed_state_covariances) = ukf.smooth([0, 1, 2])
For a quick installation::
$ easy_install pykalman
pykalman
depends on the following modules,
numpy
(for core functionality)scipy
(for core functionality)Sphinx
(for generating documentation)numpydoc
(for generating documentation)nose
(for running tests)
All of these and :mod:pykalman
can be installed using easy_install
::
$ easy_install numpy scipy Sphinx numpydoc nose pykalman
Alternatively, you can get the latest and greatest from github::
$ git clone git@github.com:pykalman/pykalman.git pykalman
$ cd pykalman
$ sudo python setup.py install
Examples of all of pykalman
's functionality can be found in the scripts in
the examples/
folder.