Skip to content

Anth0rx/CybORG

 
 

Repository files navigation

Copyright DST Group. Licensed under the MIT license.

Cyber Operations Research Gym (CybORG)

A cyber security research environment for training and development of security human and autonomous agents. Contains a common interface for both emulated, using cloud based virtual machines, and simulated network environments.

Installation

Install CybORG locally using pip from the main directory that contains this readme

pip install -e .

Creating the environment

Create a CybORG environment with the DroneSwarm Scenario that is used for CAGE Challenge 3:

from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator

sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')

The default_red_agent parameter of the DroneSwarmScenarioGenerator allows you to alter the red agent behaviour. Here is an example of a red agent that randomly selects a drone to exploit and seize control of:

from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.SimpleAgents.DroneRedAgent import DroneRedAgent

red_agent = DroneRedAgent
sg = DroneSwarmScenarioGenerator(default_red_agent=red_agent)
cyborg = CybORG(sg, 'sim')

Wrappers

To alter the interface with CybORG, wrappers are avaliable.

  • OpenAIGymWrapper - alters the interface to conform to the OpenAI Gym specification. Requires the observation to be changed into a fixed size array.
  • FixedFlatWrapper - converts the observation from a dictionary format into a fixed size 1-dimensional vector of floats
  • PettingZooParallelWrapper - alters the interface to conform to the PettingZoo Parallel specification

How to Use

OpenAI Gym Wrapper

The OpenAI Gym Wrapper allows interaction with a single external agent. The name of that external agent must be specified at the creation of the OpenAI Gym Wrapper.

from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.OpenAIGymWrapper import OpenAIGymWrapper
from CybORG.Agents.Wrappers.FixedFlatWrapper import FixedFlatWrapper

sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')
agent_name = 'blue_agent_0'
open_ai_wrapped_cyborg = OpenAIGymWrapper(agent_name=agent_name, env=FixedFlatWrapper(cyborg))
observation, reward, done, info = open_ai_wrapped_cyborg.step(0)

PettingZoo Parallel Wrapper

The PettingZoo Parallel Wrapper allows multiple agents to interact with the environment simultaneously.

from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.PettingZooParallelWrapper import PettingZooParallelWrapper

sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')
open_ai_wrapped_cyborg = PettingZooParallelWrapper(cyborg)
observations, rewards, dones, infos = open_ai_wrapped_cyborg.step({'blue_agent_0': 0, 'blue_agent_1': 0})

Ray/RLLib wrapper

from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.PettingZooParallelWrapper import PettingZooParallelWrapper
from ray.rllib.env import ParallelPettingZooEnv
from ray.tune import register_env

def env_creator_CC3(env_config: dict):
    sg = DroneSwarmScenarioGenerator()
    cyborg = CybORG(scenario_generator=sg, environment='sim')
    env = ParallelPettingZooEnv(PettingZooParallelWrapper(env=cyborg))
    return env

register_env(name="CC3", env_creator=env_creator_CC3)

Evaluating agent performance

To evaluate an agent's performance please use the evaluation script and the submission file.

Please see the submission instructions for further information on submission and evaluation of agents.

Additional Readings

For further guidance on the CybORG environment please refer to the tutorial notebook series.

Citing this project

@misc{cage_cyborg_2022, 
  Title = {Cyber Operations Research Gym}, 
  Note = {Created by Maxwell Standen, David Bowman, Son Hoang, Toby Richer, Martin Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely, KC C., Natalie Konschnik, Joshua Collyer}, 
  Publisher = {GitHub}, 
  Howpublished = {\url{https://github.com/cage-challenge/CybORG}}, 
  Year = {2022} 
}

About

Cyber Operations Research Gym

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 89.6%
  • Jupyter Notebook 9.1%
  • TeX 1.3%