PyTorch implementation for the paper:
HINT: Hierarchical Neuron Concept Explainer, CVPR 2022.
We propose HIerarchical Neuron concepT explainer (HINT) to effectively build bidirectional associations between neurons and hierarchical concepts in a low-cost and scalable manner. HINT enables us to systematically and quantitatively study whether and how the implicit hierarchical relationships of concepts are embedded into neurons, such as identifying collaborative neurons responsible to one concept and multimodal neurons for different concepts, at different semantic levels from concrete concepts (e.g., dog) to more abstract ones (e.g., animal).
- Check the required python packages in
requirements.txt
.
-
Execute
Get_feature_maps_and_saliency_maps_of_dif_concepts.py
to get feature maps and saliency maps (the images are from ImageNet train set) of the chosen layer(s) of the chosen model(s) (pre-trained on ImageNet). -
Based on previous step, execute
Get_responsible_regions.py
to get the responsible regions of different concepts. -
Run
Get_concept_classifiers_and_shap_values.ipynb
to train concept classifiers and calculate Shapley Values of neurons (which indicates neuron contribution to concept). -
Run
Object_localization_using_concept_classifier_ILSVRC.ipynb
,Object_localization_using_concept_classifier_PASCAL_VOC.ipynb
, andObject_localization_using_concept_classifier_CUB-200-2011.ipynb
to see the performance of object localization using concept classifiers (see folderoutput/concept_clf
) on different datasets.
- ImageNet
I put ImageNet dataset under /data/ImageNet_ILSVRC2012/
/data/ImageNet_ILSVRC2012/
/ILSVRC2012_train
/n07715103
n07715103_8433.JPEG
...
...
/val
ILSVRC2012_val_00040001.JPEG
ILSVRC2012_val_00040001.xml
...
...
- ImageNet sample data (with password
2333
)
I put it under /data/imagenet_sample_5000/
- Pascal VOC
I put Pascal VOC dataset under /data/Pascal_VOC_dataset/VOCdevkit/VOC2007$
(the path name may seem wired...)
/data/Pascal_VOC_dataset/VOCdevkit/VOC2007
/Annotations
009279.xml
...
/ImageSets
/Layout
/Main
/Segmentation
/JPEGImages
009279.jpg
...
/SegmentationClass
001457.png
...
/SegmentationObject
009654.png
...
- CUB-200-2011
I put CUB-200-2011 dataset under /data/CUB-200-2011$
/data/CUB-200-2011
/CUB_200_2011
/attributes
bounding_boxes.txt
classes.txt
image_class_labels.txt
/images
/001.Black_footed_Albatross
Black_Footed_Albatross_0001_796111.jpg
...
...
images.txt
/parts
README
train_test_split.txt
/segmentations
/001.Black_footed_Albatross
Black_Footed_Albatross_0001_796111.png
...
...
attributes.txt
README.txt
If you have any questions, please contact wangad@connect.hku.hk
.