The listing conforms the taxonomy introduced in this [survey paper].
-
MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks (IJCNN 2021)
- Danilo Numeroso, Davide Bacciu
- [Paper]
- [Reference Code]
-
Model agnostic generation of counterfactual explanations for molecules (ChemRxiv 2021)
- Geemi P Wellawatte, Aditi Seshadri , Andrew D White
- [Paper]
- [Reference Code]
-
Generative Causal Explanations for Graph Neural Networks (ICML 2021)
- Wanyu Lin, Hao Lan, Baochun Li
- [Paper]
- [Reference Code]
-
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks (Arxiv 2021)
- Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, Fabrizio Silvestri
- [Paper]
- [Reference Code]
-
On Explainability of Graph Neural Networks via Subgraph Explorations (ICML 2021)
- Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, Shuiwang Ji
- [Paper]
- [Reference Code]
-
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking (ICLR 2021)
- Michael Sejr Schlichtkrull, Nicola De Cao, Ivan Titov
- [Paper]
- [Reference Code]
-
Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification (CD-MAKE 2020)
- Xiaoxiao Li, Joao Saude
- [Paper]
-
Contrastive Graph Neural Network Explanation (ICML 2020)
- Lukas Faber, Amin K. Moghaddam, Roger Wattenhofer
- [Paper]
- [Reference Code]
-
Hard Masking for Explaining Graph Neural Networks (OpenReview 2020)
- Thorben Funke, Megha Khosla, Avishek Anand
- [Paper]
-
Graph Neural Networks Including Sparse Interpretability (Arxiv 2020)
- Chris Lin, Gerald J. Sun, Krishna C. Bulusu, Jonathan R. Dry, Marylens Hernandez
- [Paper]
-
Causal Screening to Interpret Graph Neural Networks (OpenReview 2020)
- Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, Tat-seng Chua
- [Paper]
-
XGNN: Towards Model-Level Explanations of Graph Neural Networks (KDD 2020)
-
Parameterized Explainer for Graph Neural Network (NeurIPS 2020)
- Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, Xiang Zhang
- [Paper]
- [Reference Code]
- [Code]
- [Code]
-
GNNExplainer: Generating Explanations for Graph Neural Networks (NeurIPS 2019)
- Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
- [Paper]
- [Reference Code]
-
GraphSVX: Shapley Value Explanations for Graph Neural Networks (CORR 2021)
- Alexandre Duval, Fragkiskos D. Malliaros
- [Paper]
- [Reference Code]
-
GraphLIME:Local Interpretable Model Explanations for Graph Neural Networks (CORR 2020)
- Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, Yi Chang
- [Paper]
- [Reference Code]
-
RelEX: A Model-Agnostic Relational Model Explainer (CORR 2020)
- Yue Zhang, David Defazio, Arti Ramesh
- [Paper]
-
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networkrk (CORR 2020)
- Minh N. Vu, My T. Thai
- [Paper]
-
Explainability Techniques for Graph Convolutional Networks (ICML 2019)
-
Layerwise Relevance Visualization in Convolutional Text Graph Classifiers (WS 2019)
-
Higher-Order Explanations of Graph Neural Networks via Relevant Walks (Arxiv 2020)
- Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-Robert Müller, Grégoire Montavon
- [Paper]
-
GCN-LRP Explanation: Exploring Latent Attention of Graph Convolutional Networks (IJCNN 2020)
-
Explainability Methods for Graph Convolutional Neural Networks (CVPR 2019)
-
Evaluating Attribution for Graph Neural Networks (NeurIPS 2020)