-
Notifications
You must be signed in to change notification settings - Fork 18.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add ConvolutionDepthwise layer #5665
base: master
Are you sure you want to change the base?
Changes from all commits
947f3ca
978b11f
15191ab
3d0182c
0a6ff1e
e51f834
d40fbd8
013377e
327a019
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
#ifndef CAFFE_CONV_DW_LAYER_HPP_ | ||
#define CAFFE_CONV_DW_LAYER_HPP_ | ||
|
||
#include <vector> | ||
#include "caffe/blob.hpp" | ||
#include "caffe/layer.hpp" | ||
#include "caffe/proto/caffe.pb.h" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
class ConvolutionDepthwiseLayer : public Layer<Dtype> { | ||
public: | ||
explicit ConvolutionDepthwiseLayer(const LayerParameter& param) | ||
: Layer<Dtype>(param) {} | ||
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top); | ||
virtual void Reshape(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top); | ||
virtual inline int ExactNumBottomBlobs() const { return 1; } | ||
virtual inline int ExactNumTopBlobs() const { return 1; } | ||
virtual inline const char* type() const { return "ConvolutionDepthwise"; } | ||
|
||
protected: | ||
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top); | ||
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top); | ||
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); | ||
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); | ||
unsigned int kernel_h_; | ||
unsigned int kernel_w_; | ||
unsigned int stride_h_; | ||
unsigned int stride_w_; | ||
unsigned int pad_h_; | ||
unsigned int pad_w_; | ||
unsigned int dilation_h_; | ||
unsigned int dilation_w_; | ||
Blob<Dtype> weight_buffer_; | ||
Blob<Dtype> weight_multiplier_; | ||
Blob<Dtype> bias_buffer_; | ||
Blob<Dtype> bias_multiplier_; | ||
}; | ||
|
||
} // namespace caffe | ||
|
||
|
||
#endif // CAFFE_CONV_DW_LAYER_HPP_ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,280 @@ | ||
#include <algorithm> | ||
#include <vector> | ||
#include "caffe/filler.hpp" | ||
#include "caffe/layers/conv_dw_layer.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void ConvolutionDepthwiseLayer<Dtype>::LayerSetUp( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
ConvolutionParameter conv_param = this->layer_param_.convolution_param(); | ||
if (conv_param.has_kernel_h() && conv_param.has_kernel_w()) { | ||
kernel_h_ = conv_param.kernel_h(); | ||
kernel_w_ = conv_param.kernel_w(); | ||
} else { | ||
if (conv_param.kernel_size_size() == 1) { | ||
kernel_h_ = conv_param.kernel_size(0); | ||
kernel_w_ = conv_param.kernel_size(0); | ||
} else { | ||
kernel_h_ = conv_param.kernel_size(0); | ||
kernel_w_ = conv_param.kernel_size(1); | ||
} | ||
} | ||
if (conv_param.has_stride_h() && conv_param.has_stride_w()) { | ||
stride_h_ = conv_param.stride_h(); | ||
stride_w_ = conv_param.stride_w(); | ||
} else { | ||
if (conv_param.stride_size() == 1) { | ||
stride_h_ = conv_param.stride(0); | ||
stride_w_ = conv_param.stride(0); | ||
} else { | ||
stride_h_ = conv_param.stride(0); | ||
stride_w_ = conv_param.stride(1); | ||
} | ||
} | ||
if (conv_param.has_pad_h() && conv_param.has_pad_w()) { | ||
pad_h_ = conv_param.pad_h(); | ||
pad_w_ = conv_param.pad_w(); | ||
} else { | ||
if (conv_param.pad_size() == 1) { | ||
pad_h_ = conv_param.pad(0); | ||
pad_w_ = conv_param.pad(0); | ||
} else { | ||
pad_h_ = conv_param.pad(0); | ||
pad_w_ = conv_param.pad(1); | ||
} | ||
} | ||
if (conv_param.dilation_size() > 0) { | ||
if (conv_param.dilation_size() == 1) { | ||
dilation_h_ = conv_param.dilation(0); | ||
dilation_w_ = conv_param.dilation(0); | ||
} else { | ||
dilation_h_ = conv_param.dilation(0); | ||
dilation_w_ = conv_param.dilation(1); | ||
} | ||
} else { | ||
dilation_h_ = 1; | ||
dilation_w_ = 1; | ||
} | ||
vector<int> weight_shape(4); | ||
weight_shape[0] = bottom[0]->channels(); | ||
weight_shape[1] = 1; | ||
weight_shape[2] = kernel_h_; | ||
weight_shape[3] = kernel_w_; | ||
vector<int> bias_shape; | ||
if (conv_param.bias_term()) { | ||
bias_shape.push_back(bottom[0]->channels()); | ||
} | ||
if (this->blobs_.size() == 0) { | ||
if (conv_param.bias_term()) { | ||
this->blobs_.resize(2); | ||
} else { | ||
this->blobs_.resize(1); | ||
} | ||
this->blobs_[0].reset(new Blob<Dtype>(weight_shape)); | ||
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>( | ||
conv_param.weight_filler())); | ||
weight_filler->Fill(this->blobs_[0].get()); | ||
if (conv_param.bias_term()) { | ||
this->blobs_[1].reset(new Blob<Dtype>(bias_shape)); | ||
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>( | ||
conv_param.bias_filler())); | ||
bias_filler->Fill(this->blobs_[1].get()); | ||
} | ||
} | ||
this->param_propagate_down_.resize(this->blobs_.size(), true); | ||
} | ||
|
||
template <typename Dtype> | ||
void ConvolutionDepthwiseLayer<Dtype>::Reshape( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
vector<int> top_shape; | ||
top_shape.push_back(bottom[0]->num()); | ||
top_shape.push_back(bottom[0]->channels()); | ||
top_shape.push_back((bottom[0]->height() + 2 * pad_h_ | ||
- (dilation_h_ * (kernel_h_ - 1) + 1)) / stride_h_ + 1); | ||
top_shape.push_back((bottom[0]->width() + 2 * pad_w_ | ||
- (dilation_w_ * (kernel_w_ - 1) + 1)) / stride_w_ + 1); | ||
top[0]->Reshape(top_shape); | ||
vector<int> weight_buffer_shape; | ||
weight_buffer_shape.push_back(bottom[0]->channels()); | ||
weight_buffer_shape.push_back(kernel_h_); | ||
weight_buffer_shape.push_back(kernel_w_); | ||
weight_buffer_shape.push_back(bottom[0]->num()); | ||
weight_buffer_shape.push_back(top[0]->height()); | ||
weight_buffer_shape.push_back(top[0]->width()); | ||
weight_buffer_.Reshape(weight_buffer_shape); | ||
vector<int> weight_multiplier_shape; | ||
weight_multiplier_shape.push_back(bottom[0]->num()); | ||
weight_multiplier_shape.push_back(top[0]->height()); | ||
weight_multiplier_shape.push_back(top[0]->width()); | ||
weight_multiplier_.Reshape(weight_multiplier_shape); | ||
caffe_set(weight_multiplier_.count(), Dtype(1), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. caffe_set just for cpu_data @sp2823 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We only need to set mutable_cpu_data or mutable_gpu_data once. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I mean caffe_set is just for pointer of cpu_data, and set data to pointer of gpu_data would crash. |
||
weight_multiplier_.mutable_cpu_data()); | ||
if (this->layer_param_.convolution_param().bias_term()) { | ||
vector<int> bias_buffer_shape; | ||
bias_buffer_shape.push_back(bottom[0]->channels()); | ||
bias_buffer_shape.push_back(bottom[0]->num()); | ||
bias_buffer_shape.push_back(top[0]->height()); | ||
bias_buffer_shape.push_back(top[0]->width()); | ||
bias_buffer_.Reshape(bias_buffer_shape); | ||
vector<int> bias_multiplier_shape; | ||
bias_multiplier_shape.push_back(bottom[0]->num()); | ||
bias_multiplier_shape.push_back(top[0]->height()); | ||
bias_multiplier_shape.push_back(top[0]->width()); | ||
bias_multiplier_.Reshape(bias_multiplier_shape); | ||
caffe_set(bias_multiplier_.count(), Dtype(1), | ||
bias_multiplier_.mutable_cpu_data()); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void ConvolutionDepthwiseLayer<Dtype>::Forward_cpu( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const int num = top[0]->num(); | ||
const int channels = top[0]->channels(); | ||
const int top_height = top[0]->height(); | ||
const int top_width = top[0]->width(); | ||
const int bottom_height = bottom[0]->height(); | ||
const int bottom_width = bottom[0]->width(); | ||
const Dtype* bottom_data = bottom[0]->cpu_data(); | ||
const Dtype* weight_data_base = this->blobs_[0]->cpu_data(); | ||
Dtype* top_data = top[0]->mutable_cpu_data(); | ||
for (int n = 0; n < num; ++n) { | ||
for (int c = 0; c < channels; ++c) { | ||
for (int h = 0; h < top_height; ++h) { | ||
for (int w = 0; w < top_width; ++w) { | ||
const Dtype* weight_data = weight_data_base | ||
+ c * kernel_h_ * kernel_w_; | ||
Dtype value = 0; | ||
for (int kh = 0; kh < kernel_h_; ++kh) { | ||
for (int kw = 0; kw < kernel_w_; ++kw) { | ||
int h_in = -pad_h_ + h * stride_h_ + kh * dilation_h_; | ||
int w_in = -pad_w_ + w * stride_w_ + kw * dilation_w_; | ||
if ((h_in >= 0) && (h_in < bottom_height) | ||
&& (w_in >= 0) && (w_in < bottom_width)) { | ||
int offset = ((n * channels + c) * bottom_height + h_in) | ||
* bottom_width + w_in; | ||
value += (*weight_data) * bottom_data[offset]; | ||
} | ||
++weight_data; | ||
} | ||
} | ||
*top_data++ = value; | ||
} | ||
} | ||
} | ||
} | ||
if (this->layer_param_.convolution_param().bias_term()) { | ||
top_data = top[0]->mutable_cpu_data(); | ||
for (int n = 0; n < num; ++n) { | ||
const Dtype* bias_data = this->blobs_[1]->cpu_data(); | ||
for (int c = 0; c < channels; ++c) { | ||
for (int h = 0; h < top_height; ++h) { | ||
for (int w = 0; w < top_width; ++w) { | ||
*top_data += *bias_data; | ||
++top_data; | ||
} | ||
} | ||
++bias_data; | ||
} | ||
} | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void ConvolutionDepthwiseLayer<Dtype>::Backward_cpu( | ||
const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, | ||
const vector<Blob<Dtype>*>& bottom) { | ||
const int num = top[0]->num(); | ||
const int channels = top[0]->channels(); | ||
const int top_height = top[0]->height(); | ||
const int top_width = top[0]->width(); | ||
const int bottom_height = bottom[0]->height(); | ||
const int bottom_width = bottom[0]->width(); | ||
caffe_set(bottom[0]->count(), Dtype(0), bottom[0]->mutable_cpu_diff()); | ||
if (this->layer_param_.convolution_param().bias_term() | ||
&& this->param_propagate_down_[1]) { | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
for (int n = 0; n < num; ++n) { | ||
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff(); | ||
for (int c = 0; c < channels; ++c) { | ||
for (int h = 0; h < top_height; ++h) { | ||
for (int w = 0; w < top_width; ++w) { | ||
*bias_diff += *top_diff; | ||
++top_diff; | ||
} | ||
} | ||
++bias_diff; | ||
} | ||
} | ||
} | ||
if (this->param_propagate_down_[0]) { | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
const Dtype* bottom_data = bottom[0]->cpu_data(); | ||
Dtype* weight_diff_base = this->blobs_[0]->mutable_cpu_diff(); | ||
for (int n = 0; n < num; ++n) { | ||
for (int c = 0; c < channels; ++c) { | ||
for (int h = 0; h < top_height; ++h) { | ||
for (int w = 0; w < top_width; ++w) { | ||
Dtype* weight_diff = weight_diff_base + c * kernel_h_ * kernel_w_; | ||
for (int kh = 0; kh < kernel_h_; ++kh) { | ||
for (int kw = 0; kw < kernel_w_; ++kw) { | ||
int h_in = -pad_h_ + h * stride_h_ + kh * dilation_h_; | ||
int w_in = -pad_w_ + w * stride_w_ + kw * dilation_w_; | ||
if ((h_in >= 0) && (h_in < bottom_height) | ||
&& (w_in >= 0) && (w_in < bottom_width)) { | ||
int offset = ((n * channels + c) * bottom_height + h_in) | ||
* bottom_width + w_in; | ||
*weight_diff += bottom_data[offset] * (*top_diff); | ||
} | ||
++weight_diff; | ||
} | ||
} | ||
++top_diff; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
if (propagate_down[0]) { | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
const Dtype* weight_data_base = this->blobs_[0]->cpu_data(); | ||
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); | ||
for (int n = 0; n < num; ++n) { | ||
for (int c = 0; c < channels; ++c) { | ||
for (int h = 0; h < top_height; ++h) { | ||
for (int w = 0; w < top_width; ++w) { | ||
const Dtype* weight_data = weight_data_base | ||
+ c * kernel_h_ * kernel_w_; | ||
for (int kh = 0; kh < kernel_h_; ++kh) { | ||
for (int kw = 0; kw < kernel_w_; ++kw) { | ||
int h_in = -pad_h_ + h * stride_h_ + kh * dilation_h_; | ||
int w_in = -pad_w_ + w * stride_w_ + kw * dilation_w_; | ||
if ((h_in >= 0) && (h_in < bottom_height) | ||
&& (w_in >= 0) && (w_in < bottom_width)) { | ||
int offset = ((n * channels + c) * bottom_height + h_in) | ||
* bottom_width + w_in; | ||
bottom_diff[offset] += (*weight_data) * (*top_diff); | ||
} | ||
++weight_data; | ||
} | ||
} | ||
++top_diff; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
#ifdef CPU_ONLY | ||
STUB_GPU(ConvolutionDepthwiseLayer); | ||
#endif | ||
|
||
INSTANTIATE_CLASS(ConvolutionDepthwiseLayer); | ||
REGISTER_LAYER_CLASS(ConvolutionDepthwise); | ||
|
||
} // namespace caffe |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do we seriously need a 6-dimensional buffer for weights? If I have a batch of 64 feature maps, let's say 256 channels, 32x32, and want to convolve with a 3x3 filter, this line would allocate 256*3*3*64*32*32 = 150,994,994 floats, so almost 600 MB - that sounds like a significant overkill.