APA-Net is a deep learning model designed for learning context specific APA usage. This guide covers the steps necessary to set up and run APA-Net.
Before running APA-Net, ensure you have Python installed on your system. Clone this repository to your local machine:
git clone https://github.com/BaderLab/APA-Net.git
cd APA-Net
pip install .
To train the APA-Net model, use the train_script.py script with the necessary command-line arguments:
python train_script.py \
--train_data "/path/to/train_data.npy" \
--train_seq "/path/to/train_seq.npy" \
--valid_data "/path/to/valid_data.npy" \
--valid_seq "/path/to/valid_seq.npy" \
--profiles "/path/to/celltype_profiles.tsv" \
--modelfile "/path/to/model_output.pt" \
--batch_size 64 \
--epochs 200 \
--project_name "APA-Net_Training" \
--device "cuda:1" \
--use_wandb "True"
--train_data
: Path to the training data file.--train_seq
: Path to the training sequence data file.--valid_data
: Path to the validation data file.--valid_seq
: Path to the validation sequence data file.--profiles
: Path to the cell type profiles file.--modelfile
: Path where the trained model will be saved.--batch_size
: Batch size for training (default: 64).--epochs
: Number of training epochs (default: 200).--project_name
: Name of the project for wandb logging.--device
: Device to run the training on (e.g., 'cuda:1').--use_wandb
: Flag to enable or disable wandb logging ('True' or 'False').