-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsublayer.py
654 lines (536 loc) · 22.3 KB
/
sublayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
import math
import torch
import torch.nn as nn
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from
"Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(
self,
head_count,
kv_dim,
query_dim=512,
dropout=0.1,
use_structure=False,
bias=True,
alpha=1.0,
beta=1.0,
):
assert kv_dim % head_count == 0
self.dim_per_head = kv_dim // head_count
self.kv_dim = kv_dim
self.query_dim = query_dim
super(MultiHeadedAttention, self).__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(kv_dim, head_count * self.dim_per_head, bias=bias)
self.linear_values = nn.Linear(kv_dim, head_count * self.dim_per_head, bias=bias)
self.linear_query = nn.Linear(query_dim, head_count * self.dim_per_head, bias=bias)
if use_structure:
self.linear_structure_k = nn.Linear(self.dim_per_head, self.dim_per_head)
self.linear_structure_v = nn.Linear(self.dim_per_head, self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.final_linear = nn.Linear(kv_dim, kv_dim)
# self.final_linear = nn.Linear(kv_dim, query_dim)
self.alpha = alpha
self.beta = beta
self.use_structure = use_structure
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.linear_query.weight)
xavier_uniform_(self.linear_keys.weight)
xavier_uniform_(self.linear_values.weight)
def forward(
self,
query,
key,
value,
structure=None,
mask=None,
key_padding_mask=None,
layer_cache=None,
type=None,
):
"""
Compute the context vector and the attention vectors.
Args:
key (`FloatTensor`): set of `key_len`
key vectors `[batch, key_len, dim]`
value (`FloatTensor`): set of `key_len`
value vectors `[batch, key_len, dim]`
query (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, dim]`
structure (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, query_len, dim]`
mask: binary key2key mask indicating which keys have
non-zero attention `[batch, key_len, key_len]`
key_padding_mask: binary padding mask indicating which keys have
non-zero attention `[batch, key_len]`
Returns:
(`FloatTensor`, `FloatTensor`) :
* output context vectors `[batch, query_len, dim]`
* one of the attention vectors `[batch, query_len, key_len]`
"""
# CHECKS
"""
batch, k_len, d = key.size()
batch_, k_len_, d_ = value.size()
aeq(batch, batch_)
aeq(k_len, k_len_)
aeq(d, d_)
batch_, q_len, d_ = query.size()
aeq(batch, batch_)
aeq(d, d_)
aeq(self.kv_dim % 8, 0)
if mask is not None:
batch_, q_len_, k_len_ = mask.size()
aeq(batch_, batch)
aeq(k_len_, k_len)
aeq(q_len_ == q_len)
print('q_len_mask: {}, q_len:{}'.format(q_len_, q_len))
"""
# END CHECKS
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
# print('key_size', key.size())
# print('value_size', value.size())
def shape(x):
""" projection """
return x.view(batch_size, -1, head_count, dim_per_head).transpose(1, 2)
def unshape(x):
""" compute context """
return x.transpose(1, 2).contiguous().view(batch_size, -1, head_count * dim_per_head)
# 1) Project key, value, and query.
if layer_cache is not None: # for decoder self-attn
if type == "self":
query, key, value = ( # [bsz, seq_len, H]
self.linear_query(query),
self.linear_keys(query),
self.linear_values(query),
)
if structure is not None and self.use_structure:
structure_k, structure_v = (
self.linear_structure_k(structure), # [bsz, seq_len, seq_len, H]
self.linear_structure_v(structure), # []
)
else:
structure_k = None
structure_v = None
key = shape(key) # [bsz, nhead, key_len, H_head]
value = shape(value) # [bsz, nhead, value_len, H_head]
if layer_cache is not None:
device = key.device
if layer_cache["self_keys"] is not None:
key = torch.cat((layer_cache["self_keys"].to(device), key), dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat((layer_cache["self_values"].to(device), value), dim=2)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif type == "context": # for decoder context-attn
query = self.linear_query(query)
if layer_cache is not None:
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = layer_cache["memory_keys"], layer_cache["memory_values"]
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else: # encoder/decoder self/context attn
key = self.linear_keys(key)
value = self.linear_values(value)
# print('input:', query.size())
# print('Linear:', self.linear_query)
query = self.linear_query(query)
if structure is not None and self.use_structure:
structure_k, structure_v = (
self.linear_structure_k(structure),
self.linear_structure_v(structure),
)
else:
structure_k = None
structure_v = None
key = shape(key) # [batch_size, nhead, key_len, dim]
value = shape(value)
query = shape(query) # [batch_size, nhead, key_len, dim]
# print('key, query', key.size(), query.size())
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head) # attention scale
scores = torch.matmul(query, key.transpose(2, 3)) # [batch_size, nhead, query_len, key_len]
# print('scores', scores.size())
if structure_k is not None: # [batch_size, seq_len, seq_len, dim]
q = query.transpose(1, 2) # [batch_size, seq_len, nhead, dim]
# print(q.size(), structure_k.transpose(2,3).size())
scores_k = torch.matmul(
q, structure_k.transpose(2, 3)
) # [batch_size, seq_len, nhead, seq_len]
scores_k = scores_k.transpose(1, 2) # [batch_size, nhead, seq_len, seq_len]
# print (scores.size(),scores_k.size())
scores = scores + self.alpha * scores_k
if key_padding_mask is not None: # padding mask
key_padding_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) # `[B, 1, 1, seq_len]`
# print('key_padding_mask', key_padding_mask.size())
scores = scores.masked_fill(key_padding_mask.bool(), -1e4) # -1e4 allows fp16
# print('scores_masked', scores)
if mask is not None: # key-to-key mask
mask = mask.unsqueeze(1) # `[B, 1, seq_len, seq_len]`
scores = scores.masked_fill(mask.bool(), -1e4) # -1e4 allows fp16
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores)
drop_attn = self.dropout(attn)
# print(drop_attn[0][0][3])
context = torch.matmul(drop_attn, value)
if structure_v is not None:
drop_attn_v = drop_attn.transpose(1, 2) # [batch_size, seq_len, nhead, seq_len]
context_v = torch.matmul(
drop_attn_v, structure_v
) # [batch_size, seq_len, seq_len, dim]
context_v = context_v.transpose(1, 2) # [batch_size, nhead, seq_len, dim]
context = context + self.beta * context_v
context = unshape(context)
output = self.final_linear(context)
# Return one attn
first_head_attn = drop_attn.view(batch_size, head_count, query_len, key_len)[
:, 0, :, :
].contiguous()
return output, first_head_attn
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability(0-1.0).
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.dropout_1 = nn.Dropout(dropout)
self.relu = nn.ReLU()
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
"""
Layer definition.
Args:
input: [ batch_size, input_len, model_dim ]
Returns:
output: [ batch_size, input_len, model_dim ]
"""
inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
"""Global attention modules (Luong / Bahdanau)"""
# This class is mainly used by decoder.py for RNNs but also
# by the CNN / transformer decoder when copy attention is used
# CNN has its own attention mechanism ConvMultiStepAttention
# Transformer has its own MultiHeadedAttention
def sequence_mask(lengths, max_len=None):
"""
Creates a boolean mask from sequence lengths.
"""
batch_size = lengths.numel()
max_len = max_len or lengths.max()
return (torch.arange(0, max_len, device=lengths.device)
.type_as(lengths)
.repeat(batch_size, 1)
.lt(lengths.unsqueeze(1)))
class GlobalAttention(nn.Module):
r"""
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
Constructs a unit mapping a query `q` of size `dim`
and a source matrix `H` of size `n x dim`, to an output
of size `dim`.
.. mermaid::
graph BT
A[Query]
subgraph RNN
C[H 1]
D[H 2]
E[H N]
end
F[Attn]
G[Output]
A --> F
C --> F
D --> F
E --> F
C -.-> G
D -.-> G
E -.-> G
F --> G
All models compute the output as
:math:`c = \sum_{j=1}^{\text{SeqLength}} a_j H_j` where
:math:`a_j` is the softmax of a score function.
Then then apply a projection layer to [q, c].
However they
differ on how they compute the attention score.
* Luong Attention (dot, general):
* dot: :math:`\text{score}(H_j,q) = H_j^T q`
* general: :math:`\text{score}(H_j, q) = H_j^T W_a q`
* Bahdanau Attention (mlp):
* :math:`\text{score}(H_j, q) = v_a^T \text{tanh}(W_a q + U_a h_j)`
Args:
dim (int): dimensionality of query and key
coverage (bool): use coverage term
attn_type (str): type of attention to use, options [dot,general,mlp]
attn_func (str): attention function to use, options [softmax,sparsemax]
"""
def __init__(self, dim, coverage=False, attn_type="dot", attn_func="softmax"):
super(GlobalAttention, self).__init__()
self.dim = dim
assert attn_type in [
"dot",
"general",
"mlp",
], "Please select a valid attention type (got {:s}).".format(attn_type)
self.attn_type = attn_type
assert attn_func in ["softmax"], "Please select a valid attention function."
self.attn_func = attn_func
if self.attn_type == "general":
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == "mlp":
self.linear_context = nn.Linear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, 1, bias=False)
# mlp wants it with bias
out_bias = self.attn_type == "mlp"
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def score(self, h_t, h_s):
"""
Args:
h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)``
h_s (FloatTensor): sequence of sources ``(batch, src_len, dim``
Returns:
FloatTensor: raw attention scores (unnormalized) for each src index
``(batch, tgt_len, src_len)``
"""
# Check input sizes
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
if self.attn_type in ["general", "dot"]:
if self.attn_type == "general":
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
# (batch, t_len, d) x (batch, d, s_len) --> (batch, t_len, s_len)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
# (batch, t_len, s_len, d)
wquh = torch.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, source, memory_bank, memory_lengths=None, coverage=None):
"""
Args:
source (FloatTensor): query vectors ``(batch, tgt_len, dim)``
memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)``
memory_lengths (LongTensor): the source context lengths ``(batch,)``
coverage (FloatTensor): None (not supported yet)
Returns:
(FloatTensor, FloatTensor):
* Computed vector ``(tgt_len, batch, dim)``
* Attention distribtutions for each query
``(tgt_len, batch, src_len)``
"""
# one step input
if source.dim() == 2:
one_step = True
source = source.unsqueeze(1)
else:
one_step = False
batch, source_l, dim = memory_bank.size()
batch_, target_l, dim_ = source.size()
if coverage is not None:
batch_, source_l_ = coverage.size()
if coverage is not None:
cover = coverage.view(-1).unsqueeze(1)
memory_bank += self.linear_cover(cover).view_as(memory_bank)
memory_bank = torch.tanh(memory_bank)
# compute attention scores, as in Luong et al.
align = self.score(source, memory_bank)
if memory_lengths is not None:
mask = sequence_mask(memory_lengths, max_len=align.size(-1))
mask = mask.unsqueeze(1) # Make it broadcastable.
align.masked_fill_(~mask, -float("inf"))
# Softmax or sparsemax to normalize attention weights
if self.attn_func == "softmax":
align_vectors = F.softmax(align.view(batch * target_l, source_l), -1)
align_vectors = align_vectors.view(batch, target_l, source_l)
# each context vector c_t is the weighted average
# over all the source hidden states
c = torch.bmm(align_vectors, memory_bank)
# concatenate
concat_c = torch.cat([c, source], 2).view(batch * target_l, dim * 2)
attn_h = self.linear_out(concat_c).view(batch, target_l, dim)
if self.attn_type in ["general", "dot"]:
attn_h = torch.tanh(attn_h)
if one_step:
attn_h = attn_h.squeeze(1)
align_vectors = align_vectors.squeeze(1)
# Check output sizes
batch_, dim_ = attn_h.size()
batch_, source_l_ = align_vectors.size()
else:
attn_h = attn_h.transpose(0, 1).contiguous()
align_vectors = align_vectors.transpose(0, 1).contiguous()
# Check output sizes
target_l_, batch_, dim_ = attn_h.size()
target_l_, batch_, source_l_ = align_vectors.size()
return attn_h, align_vectors
class StackedLSTM(nn.Module):
"""
Our own implementation of stacked LSTM.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, rnn_size, dropout):
super(StackedLSTM, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.LSTMCell(input_size, rnn_size))
input_size = rnn_size
def forward(self, input_feed, hidden):
h_0, c_0 = hidden
h_1, c_1 = [], []
for i, layer in enumerate(self.layers):
h_1_i, c_1_i = layer(input_feed, (h_0[i], c_0[i]))
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
c_1 += [c_1_i]
h_1 = torch.stack(h_1)
c_1 = torch.stack(c_1)
return input_feed, (h_1, c_1)
class StackedGRU(nn.Module):
"""
Our own implementation of stacked GRU.
Needed for the decoder, because we do input feeding.
"""
def __init__(self, num_layers, input_size, rnn_size, dropout):
super(StackedGRU, self).__init__()
self.dropout = nn.Dropout(dropout)
self.num_layers = num_layers
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(nn.GRUCell(input_size, rnn_size))
input_size = rnn_size
def forward(self, input_feed, hidden):
h_1 = []
for i, layer in enumerate(self.layers):
h_1_i = layer(input_feed, hidden[0][i])
input_feed = h_1_i
if i + 1 != self.num_layers:
input_feed = self.dropout(input_feed)
h_1 += [h_1_i]
h_1 = torch.stack(h_1)
return input_feed, (h_1,)
class CopyGenerator(nn.Module):
"""An implementation of pointer-generator networks
:cite:`DBLP:journals/corr/SeeLM17`.
These networks consider copying words
directly from the source sequence.
The copy generator is an extended version of the standard
generator that computes three values.
* :math:`p_{softmax}` the standard softmax over `tgt_dict`
* :math:`p(z)` the probability of copying a word from
the source
* :math:`p_{copy}` the probility of copying a particular word.
taken from the attention distribution directly.
The model returns a distribution over the extend dictionary,
computed as
:math:`p(w) = p(z=1) p_{copy}(w) + p(z=0) p_{softmax}(w)`
.. mermaid::
graph BT
A[input]
S[src_map]
B[softmax]
BB[switch]
C[attn]
D[copy]
O[output]
A --> B
A --> BB
S --> D
C --> D
D --> O
B --> O
BB --> O
Args:
input_size (int): size of input representation
output_size (int): size of output vocabulary
pad_idx (int)
"""
def __init__(self, input_size, output_size, pad_idx):
super(CopyGenerator, self).__init__()
self.linear = nn.Linear(input_size, output_size)
self.linear_copy = nn.Linear(input_size, 1)
self.pad_idx = pad_idx
def forward(self, hidden, attn, src_map):
"""
Compute a distribution over the target dictionary
extended by the dynamic dictionary implied by copying
source words.
Args:
hidden (FloatTensor): hidden outputs ``(batch x tlen, input_size)``
attn (FloatTensor): attn for each ``(batch x tlen, input_size)``
src_map (FloatTensor):
A sparse indicator matrix mapping each source word to
its index in the "extended" vocab containing.
``(src_len, batch, extra_words)``
"""
# CHECKS
batch_by_tlen, _ = hidden.size()
batch_by_tlen_, slen = attn.size()
slen_, batch, cvocab = src_map.size()
# Original probabilities.
logits = self.linear(hidden)
logits[:, self.pad_idx] = -float('inf')
prob = torch.softmax(logits, 1)
# Probability of copying p(z=1) batch.
p_copy = torch.sigmoid(self.linear_copy(hidden))
# Probability of not copying: p_{word}(w) * (1 - p(z))
out_prob = torch.mul(prob, 1 - p_copy)
mul_attn = torch.mul(attn, p_copy)
copy_prob = torch.bmm(
mul_attn.view(-1, batch, slen).transpose(0, 1),
src_map.transpose(0, 1)
).transpose(0, 1)
copy_prob = copy_prob.contiguous().view(-1, cvocab)
return torch.cat([out_prob, copy_prob], 1)