Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update numpy to 1.26.4 #451

Closed
wants to merge 1 commit into from
Closed

Conversation

pyup-bot
Copy link
Collaborator

@pyup-bot pyup-bot commented Feb 6, 2024

This PR updates numpy from 1.26.3 to 1.26.4.

Changelog

1.26.4

discovered after the 1.26.3 release. The Python versions supported by
this release are 3.9-3.12. This is the last planned release in the
1.26.x series.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Charles Harris
-   Elliott Sales de Andrade
-   Lucas Colley +
-   Mark Ryan +
-   Matti Picus
-   Nathan Goldbaum
-   Ola x Nilsson +
-   Pieter Eendebak
-   Ralf Gommers
-   Sayed Adel
-   Sebastian Berg
-   Stefan van der Walt
-   Stefano Rivera

Pull requests merged

A total of 19 pull requests were merged for this release.

-   [25323](https://github.com/numpy/numpy/pull/25323): BUG: Restore missing asstr import
-   [25523](https://github.com/numpy/numpy/pull/25523): MAINT: prepare 1.26.x for further development
-   [25539](https://github.com/numpy/numpy/pull/25539): BUG: `numpy.array_api`: fix `linalg.cholesky` upper decomp\...
-   [25584](https://github.com/numpy/numpy/pull/25584): CI: Bump azure pipeline timeout to 120 minutes
-   [25585](https://github.com/numpy/numpy/pull/25585): MAINT, BLD: Fix unused inline functions warnings on clang
-   [25599](https://github.com/numpy/numpy/pull/25599): BLD: include fix for MinGW platform detection
-   [25618](https://github.com/numpy/numpy/pull/25618): TST: Fix test_numeric on riscv64
-   [25619](https://github.com/numpy/numpy/pull/25619): BLD: fix building for windows ARM64
-   [25620](https://github.com/numpy/numpy/pull/25620): MAINT: add `newaxis` to `__all__` in `numpy.array_api`
-   [25630](https://github.com/numpy/numpy/pull/25630): BUG: Use large file fallocate on 32 bit linux platforms
-   [25643](https://github.com/numpy/numpy/pull/25643): TST: Fix test_warning_calls on Python 3.12
-   [25645](https://github.com/numpy/numpy/pull/25645): TST: Bump pytz to 2023.3.post1
-   [25658](https://github.com/numpy/numpy/pull/25658): BUG: Fix AVX512 build flags on Intel Classic Compiler
-   [25670](https://github.com/numpy/numpy/pull/25670): BLD: fix potential issue with escape sequences in `__config__.py`
-   [25718](https://github.com/numpy/numpy/pull/25718): CI: pin cygwin python to 3.9.16-1 and fix typing tests \[skip\...
-   [25720](https://github.com/numpy/numpy/pull/25720): MAINT: Bump cibuildwheel to v2.16.4
-   [25748](https://github.com/numpy/numpy/pull/25748): BLD: unvendor meson-python on 1.26.x and upgrade to meson-python\...
-   [25755](https://github.com/numpy/numpy/pull/25755): MAINT: Include header defining backtrace
-   [25756](https://github.com/numpy/numpy/pull/25756): BUG: Fix np.quantile(\[Fraction(2,1)\], 0.5) (#24711)

Checksums

MD5

 90f33cdd8934cd07192d6ede114d8d4d  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
 63ac60767f6724490e587f6010bd6839  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
 ad4e82b225aaaf5898ea9798b50978d8  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 d428e3da2df4fa359313348302cf003a  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 89937c3bb596193f8ca9eae2ff84181e  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
 de4f9da0a4e6dfd4cec39c7ad5139803  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
 2c1f73fd9b3acf4b9b0c23e985cdd38f  numpy-1.26.4-cp310-cp310-win32.whl
 920ad1f50e478b1a877fe7b7a46cc520  numpy-1.26.4-cp310-cp310-win_amd64.whl
 719d1ff12db38903dcfd6749078fb11d  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
 eb601e80194d2e1c00d8daedd8dc68c4  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
 71a7ab11996fa370dc28e28731bd5c32  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 eb0cdd03e1ee2eb45c57c7340c98cf48  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 9d4ae1b0b27a625400f81ed1846a5667  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
 1b6771350d2f496157430437a895ba4b  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
 1e4a18612ee4d0e54e0833574ebc6d25  numpy-1.26.4-cp311-cp311-win32.whl
 5fd325dd8704023c1110835d7a1b095a  numpy-1.26.4-cp311-cp311-win_amd64.whl
 d95ce582923d24dbddbc108aa5fd2128  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
 6f16f3d70e0d95ce2b032167c546cc95  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
 5369536d4c45fbe384147ff23185b48a  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 1ceb224096686831ad731e472b65e96a  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 cd8d3c00bbc89f9bc07e2df762f9e2ae  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
 5bd81ce840bb2e42befe01efb0402b79  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
 2cc3b0757228078395da3efa3dc99f23  numpy-1.26.4-cp312-cp312-win32.whl
 305155bd5ae879344c58968879584ed1  numpy-1.26.4-cp312-cp312-win_amd64.whl
 ec2310f67215743e9c5d16b6c9fb87b6  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
 406aea6081c1affbebdb6ad56b5deaf4  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
 fee12f0a3cbac7bbf1a1c2d82d3b02a9  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 baf4b7143c7b9ce170e62b33380fb573  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 376ff29f90b7840ae19ecd59ad1ddf53  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
 86785b3a7cd156c08c2ebc26f7816fb3  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
 ab8a9ab69f16b7005f238cda76bc0bac  numpy-1.26.4-cp39-cp39-win32.whl
 fafa4453e820c7ff40907e5dc79d8199  numpy-1.26.4-cp39-cp39-win_amd64.whl
 7f13e2f07bd3e4a439ade0e4d27905c6  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 928954b41c1cd0e856f1a31d41722661  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 57bbd5c0b3848d804c416cbcab4a0ae8  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
 19550cbe7bedd96a928da9d4ad69509d  numpy-1.26.4.tar.gz

SHA256

 9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0  numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl
 2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a  numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl
 d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4  numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f  numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a  numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl
 a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2  numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl
 bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07  numpy-1.26.4-cp310-cp310-win32.whl
 b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5  numpy-1.26.4-cp310-cp310-win_amd64.whl
 4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71  numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl
 edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef  numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl
 7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e  numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5  numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a  numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl
 60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a  numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl
 1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20  numpy-1.26.4-cp311-cp311-win32.whl
 cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2  numpy-1.26.4-cp311-cp311-win_amd64.whl
 b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218  numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl
 03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b  numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl
 9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b  numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed  numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a  numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl
 1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0  numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl
 50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110  numpy-1.26.4-cp312-cp312-win32.whl
 08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818  numpy-1.26.4-cp312-cp312-win_amd64.whl
 7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c  numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl
 52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be  numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl
 d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764  numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3  numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd  numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl
 47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c  numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl
 a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6  numpy-1.26.4-cp39-cp39-win32.whl
 3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea  numpy-1.26.4-cp39-cp39-win_amd64.whl
 afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30  numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c  numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0  numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl
 2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010  numpy-1.26.4.tar.gz
Links

@pyup-bot
Copy link
Collaborator Author

Closing this in favor of #484

@pyup-bot pyup-bot closed this Jun 16, 2024
@BerriJ BerriJ deleted the pyup-update-numpy-1.26.3-to-1.26.4 branch June 16, 2024 14:15
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant