Spooq is your PySpark based helper library for ETL data ingestion pipeline in Data Lakes.
- The main components are:
- Extractors
- Transformers
- Loaders
Those components are independent and can be used separately or be plugged-in into a pipeline instance.
You can also use the custom functions from the Mapper transformer directly with PySpark (f.e. select
or withColumn
).
from pyspark.sql import Row
from pyspark.sql import functions as F, types as T
from spooq.transformer import Mapper
from spooq.transformer import mapper_transformations as spq
input_df = spark.createDataFrame(
[
Row(
struct_a=Row(idx="000_123_456", sts="enabled", ts="1597069446000"),
struct_b=Row(itms="1,2,4", sts="whitelisted", ts="2020-08-12T12:43:14+0000"),
struct_c=Row(email="abc@def.com", gndr="F", dt="2020-08-05", cmt="fine"),
),
Row(
struct_a=Row(idx="000_654_321", sts="off", ts="1597069500784"),
struct_b=Row(itms="5", sts="blacklisted", ts="2020-07-01T12:43:14+0000"),
struct_c=Row(email="", gndr="m", dt="2020-06-27", cmt="faulty"),
),
],
schema="""
a: struct<idx string, sts string, ts string>,
b: struct<itms string, sts string, ts string>,
c: struct<email string, gndr string, dt string, cmt string>
"""
)
input_df.printSchema()
root
|-- a: struct (nullable = true)
| |-- idx: string (nullable = true)
| |-- sts: string (nullable = true)
| |-- ts: string (nullable = true)
|-- b: struct (nullable = true)
| |-- itms: string (nullable = true)
| |-- sts: string (nullable = true)
| |-- ts: string (nullable = true)
|-- c: struct (nullable = true)
| |-- email: string (nullable = true)
| |-- gndr: string (nullable = true)
| |-- dt: string (nullable = true)
| |-- cmt: string (nullable = true)
mapping = [
# output_name # source # transformation
("index", "a.idx", spq.to_int), # removes leading zeros and underline characters
("is_enabled", "a.sts", spq.to_bool), # recognizes additional words like "on", "off", "disabled", "enabled", ...
("a_updated_at", "a.ts", spq.to_timestamp), # supports unix timestamps in ms or seconds and strings
("items", "b.itms", spq.str_to_array(cast="int")), # splits a comma delimited string into an array and casts its elements
("block_status", "b.sts", spq.map_values(mapping={"whitelisted": "allowed", "blacklisted": "blocked"})), # applies lookup dictionary
("b_updated_at", "b.ts", spq.to_timestamp), # supports unix timestamps in ms or seconds and strings
("has_email", "c.email", spq.has_value), # interprets also empty strings as no value, although, zeros are values
("gender", "c.gndr", spq.apply(func=F.lower)), # applies provided function to all values
("creation_date", "c.dt", spq.to_timestamp(cast="date")), # explicitly casts result after transformation
("processed_at", F.current_timestamp(), spq.as_is), # source column is a function, no transformation to the results
("comment", "c.cmt", "string"), # no transformation, only cast; alternatively: spq.to_str or spq.as_is(cast="string")
]
output_df = Mapper(mapping).transform(input_df)
output_df.show(truncate=False)
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
|index |is_enabled|a_updated_at |items |block_status|b_updated_at |has_email|gender|creation_date|processed_at |comment|
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
|123456|true |2020-08-10 16:24:06 |[1, 2, 4]|allowed |2020-08-12 14:43:14|true |f |2020-08-05 |2022-08-12 09:17:09.83|fine |
|654321|false |2020-08-10 16:25:00.784|[5] |blocked |2020-07-01 14:43:14|false |m |2020-06-27 |2022-08-12 09:17:09.83|faulty |
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
output_df.printSchema()
root
|-- index: integer (nullable = true)
|-- is_enabled: boolean (nullable = true)
|-- a_updated_at: timestamp (nullable = true)
|-- items: array (nullable = true)
| |-- element: integer (containsNull = true)
|-- block_status: string (nullable = true)
|-- b_updated_at: timestamp (nullable = true)
|-- has_email: boolean (nullable = false)
|-- gender: string (nullable = true)
|-- creation_date: date (nullable = true)
|-- processed_at: timestamp (nullable = false)
|-- comment: string (nullable = true)
- Custom Mapping Transformations
- Exploder
- Filter
- Mapper (Restructuring of complex DataFrames)
- Threshold-based Cleanser
- Enumeration-based Cleanser
- Newest by Group (Most current record per ID)
pip install spooq
For a more details please consult the online documentation at
Please see for more information.
This library is licensed under the