Skip to content

Latest commit

 

History

History
287 lines (258 loc) · 14.3 KB

README.md

File metadata and controls

287 lines (258 loc) · 14.3 KB

YOLO-Summary

YOLO源码:

目标检测发展进程: deep_learning_object_detection_history

YOLOv3复现代码合集涵盖 5 种常用深度学习框架:

TensorFlow

Project Infernece Train star
tensorflow-yolov3 1837
yolov3-tf2 795
tensorflow-yolo-v3 x 666
YOLOv3-tensorflow 272

PyTorch

Project Infernece Train star
PyTorch-YOLOv3 2955
yolov3 2686
pytorch-yolo-v3 x 2291
YOLO_v3_tutorial_from_scratch x 1489
ObjectDetection-OneStageDet 1471
YOLOv3_PyTorch 442
PyTorch_YOLOv3 258

Keras

Project Infernece Train Star
keras-yolo3 4680
YOLOv3 x 505
keras-YOLOv3-mobilenet 410

Caffe

Project Infernece Train Star
MobileNet-YOLO 569
caffe-yolov3 x 273
Caffe-YOLOv3-Windows 163

MXNet

Project Infernece Train Star
gluoncv 3187

参考:

一、yolo框架的解读:

二、500问里目标检测解决的问题和yolo解读

三、基于YOLO的项目

3.1使用YOLOv3训练、使用Mask-RCNN训练、理解ResNet、模型部署、人脸识别、文本分类等:

3.2基于yolo3 与crnn 实现中文自然场景文字检测及识别

0.png

3.3 YOLOv3 in PyTorch > ONNX > CoreML > iOS

1.png

3.4YoloV3/tiny-YoloV3+RaspberryPi3/Ubuntu LaptopPC+NCS/NCS2+USB Camera+Python+OpenVINO

2.png

3.5基于darknet框架实现CTPN版本自然场景文字检测与CNN+CTCOCR文字识别

3.6教程:用YOLO+Tesseract实现定制OCR系统

《Tutorial : Building a custom OCR using YOLO and Tesseract》

3.7基于YOLOv3的交通信号违章检测系统

Traffic Signal Violation Detection System using Computer Vision - A Computer Vision based Traffic Signal Violation Detection System from video footage using YOLOv3 & Tkinter. (GUI Included)

3.8 OpenCV 'dnn' with NVIDIA GPUs: 1549% faster YOLO, SSD, and Mask R-CNN

10.png

3.9 Object Detection and Tracking

11.png

3.10 基于yolov3轻量级人脸检测

加入关键点的darknet训练框架,使用yolov3实现了轻量级的人脸检测 selfie.jpg

3.11 基于D/CIoU_YOLO_V3口罩识别

predictions9.jpg

3.12 Object Detection: YOLO, MobileNetv3 and EfficientDet

11.png

3.13 Yolo-Fastest:超超超快的开源ARM实时目标检测算法

Network VOC mAP(0.5) COCO mAP(0.5) Resolution Run Time(Ncnn 1xCore) Run Time(Ncnn 4xCore) FLOPS Weight size
MobileNetV2-YOLOv3-Nano 65.27 30.13 320 11.36ms 5.48ms 0.55BFlops 3.0MB
Yolo-Fastest(our) 61.02 23.65 320 6.74ms 4.42ms 0.23BFlops 1.3MB
Yolo-Fastest-XL(our) 69.43 32.45 320 15.15ms 7.09ms 0.70BFlops 3.5MB

3.15 OpenCV ‘dnn’ with NVIDIA GPUs: 1549% faster YOLO, SSD, and Mask R-CNN

3.16 yolov5-face

在yolov5的基础上增加landmark预测分支,loss使用wingloss,使用yolov5s取得了相对于retinaface-r50更好的性能

3.17 yolov7-face

3.18 YOLO ALL YOU NEED

YOLOU2.png

四、YOLO模型压缩:

4.1、剪枝:

五、YOLO系列

5.1 Enriching Variety of Layer-wise Learning Information by Gradient Combination

Model Size mAP@0.5 BFLOPs
EfficientNet_b0-PRN 416x416 45.5 3.730
EfficientNet_b0-PRN 320x320 41.0 2.208

5.2 Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving

4.png

5.3 YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection

Model model Size mAP(voc 2007) computational cost(ops)
Tiny YOLOv2[13] 60.5MB 57.1% 6.97B
Tiny YOLOv3[14] 33.4MB 58.4% 5.52B
YOLO Nano 4.0MB 69.1% 4.57B

5.4YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

DataSet mAP FPS
PASCAL VOC 33.57 21
COCO 12.26 21

5.5 SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications

6.png

5.6 Strongeryolo-pytorch - Pytorch implementation of Stronger-Yolo with channel-pruning

Performance on VOC2007 Test(mAP) after pruning

Model Backbone MAP Flops(G) Params(M)
strongerv3 Mobilev2 79.6 4.33 6.775
strongerv3-sparsed Mobilev2 77.4 4.33 6.775
strongerv3-Pruned(30% pruned) Mobilev2 77.1 3.14 3.36
strongerv2 Darknet53 80.2 49.8 61.6
strongerv2-sparsed Darknet53 78.1 49.8 61.6
strongerv2-Pruned(20% pruned) Darknet53 76.8 49.8 45.2

5.7 Learning Spatial Fusion for Single-Shot Object Detection

YOLOv3+ASFF(自适应空间特征融合)组合,性能优于CornerNet和CenterNet等,在COCO上,38.1mAP/60 FPS,43.9mAP/29FPS! 7.png

System test-dev mAP Time (V100) Time (2080ti)
YOLOv3 608 33.0 20ms 24ms
YOLOv3 608+ BoFs 37.0 20ms 24ms
YOLOv3 608(ours baseline) 38.8 20ms 24ms
YOLOv3 608+ ASFF 40.6 22ms 28ms
YOLOv3 608+ ASFF* 42.4 22ms 29ms
YOLOv3 800+ ASFF* 43.9 34ms 40ms

5.8 Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression

8.png

5.9 xYOLO: A Model For Real-Time Object Detection In Humanoid Soccer On Low-End Hardware

5.10、CSPNet: A New Backbone that can Enhance Learning Capability of CNN

9.png

5.11、Spiking-YOLO: Spiking Neural Network for Real-time Object Detection

5.12、 Enriching Variety of Layer-wise Learning Information by Gradient Combination

5.13、YOLOv4: Optimal Speed and Accuracy of Object Detection

yolov4.png

5.14、PP-YOLO: An Effective and Efficient Implementation of Object Detector

ppyolo_map_fps.png

5.15、Scaled-YOLOv4: Scaling Cross Stage Partial Network

Scaled-YOLOv4.png

5.16、You Only Look One-level Feature

yolof.png

5.17、You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR.png

5.18、YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

YOLOV7.png

5.19、YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications

YOLOV6.png

5.20、YOLOX: Exceeding YOLO Series in 2021

YOLOX.png

5.21 You Only 👀 Once for Panoptic ​ 🚗 Perception

yolop.png

5.22 YOLOPv2:rocket:: Better, Faster, Stronger for Panoptic driving Perception

YOLOPV2.jpg