Skip to content
This repository has been archived by the owner on Mar 2, 2022. It is now read-only.
/ OpenVINO-YoloV3 Public archive

YoloV3/tiny-YoloV3+RaspberryPi3/Ubuntu LaptopPC+NCS/NCS2+USB Camera+Python+OpenVINO

License

Notifications You must be signed in to change notification settings

PINTO0309/OpenVINO-YoloV3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenVINO-YoloV3

YoloV3 / tiny-YoloV3 + RaspberryPi3 / Ubuntu LaptopPC + NCS/NCS2 + USB Camera + Python

Inspired from https://github.com/mystic123/tensorflow-yolo-v3.git

Performance comparison as a mobile application (Based on sensory comparison)
◯=HIGH, △=MEDIUM, ×=LOW

No. Model Speed Accuracy Adaptive distance
1 SSD × ALL
2 MobileNet-SSD Short distance
3 YoloV3 × ALL
4 tiny-YoloV3 Long distance

05

My articles

  1. [24 FPS] Boost RaspberryPi3 with four Neural Compute Stick 2 (NCS2) MobileNet-SSD / YoloV3 [48 FPS for Core i7]
  2. [13 FPS] NCS2 x 4 + Full size YoloV3 performance has been tripled
  3. Support for local training and OpenVINO of One Class tiny-YoloV3 with a proprietary data set

Change history

[Mar 01, 2019] Improve accuracy. Fixed preprocessing and postprocessing bug.
[Mar 17, 2019] Added a training procedure with your own data set.
[Apr 03, 2019] Work on OpenVINO 2019 R1 started.
[Apr 14, 2019] Compatible with 2019 R1.
[Apr 26, 2019] Compatible with 2019 R1.0.1.

Operation sample

<CPP + YoloV3 - Intel Core i7-8750H, CPU Only, 4 FPS - 5 FPS>

<CPP + tiny-YoloV3 - Intel Core i7-8750H, CPU Only, 60 FPS>

<Python + tiny-YoloV3 + USBCamera, Core i7-8750H, CPU Only, 30 FPS>

<Python + tiny-YoloV3 + Async + USBCamera, Core i7-8750H, NCS2, 30 FPS+>
To raise the detection rate, lower the threshold by yourself.
The default threshold is 40%.

<Python + YoloV3 + MP4, Core i7-8750H, NCS2 x4, 13 FPS>
【Note】 Due to the performance difference of ARM <-> Core series, performance is degraded in RaspberryPi3.

Python Version YoloV3 / tiny-YoloV3 (Dec 28, 2018 Operation confirmed)

YoloV3

$ python3 openvino_yolov3_test.py

tiny-YoloV3 + NCS2 MultiStick

$ python3 openvino_tiny-yolov3_MultiStick_test.py -numncs 1

YoloV3 + NCS2 MultiStick (Pretty slow)

$ python3 openvino_yolov3_MultiStick_test.py -numncs 4

CPP Version YoloV3 / tiny-YoloV3 (Dec 16, 2018 Operation confirmed)

cpp version is here "cpp/object_detection_demo_yolov3_async"

Environment

  • LattePanda Alpha (Intel 7th Core m3-7y30) or LaptopPC (Intel 8th Core i7-8750H)
  • Ubuntu 16.04 x86_64
  • RaspberryPi3
  • Raspbian Stretch armv7l
  • OpenVINO toolkit 2019 R1.0.1 (2019.1.133)
  • Python 3.5
  • OpenCV 4.1.0-openvino
  • Tensorflow v1.12.0 or Tensorflow-GPU v1.12.0 (pip install)
  • YoloV3 (MS-COCO)
  • tiny-YoloV3 (MS-COCO)
  • USB Camera (PlaystationEye) / Movie file (mp4)
  • Intel Neural Compute Stick v1 / v2

OpenVINO Supported Layers (As of Apr 14, 2019)

Supported Devices (https://docs.openvinotoolkit.org/latest/_docs_IE_DG_supported_plugins_Supported_Devices.html#supported_layers)

Layers GPU CPU MYRIAD(VPU) GNA FPGA ShapeInfer
Activation-Clamp Supported SupportedSupported Supported Supported Supported
Activation-ELU Supported SupportedSupported Not Supported Supported Supported
Activation-Leaky ReLU Supported SupportedSupported Supported Supported Supported
Activation-PReLU Supported SupportedSupported Not Supported Supported Supported
Activation-ReLU Supported SupportedSupported Supported Supported Supported
Activation-ReLU6 Supported SupportedSupported Not Supported Not Supported Supported
Activation-Sigmoid/Logistic Supported SupportedSupported Supported Not Supported Supported
Activation-TanH Supported SupportedSupported Supported Not Supported Supported
ArgMax Supported Supported Supported Not Supported Not Supported Supported
BatchNormalization Supported Supported Supported Not Supported Supported Supported
Concat Supported SupportedSupported Supported Supported Supported
Const Supported Supported Supported Not Supported Not Supported Not Supported
Convolution-Dilated Supported Supported Supported Not Supported Not Supported Supported
Convolution-Dilated 3D Not Supported Supported Not Supported Not Supported Not Supported Not Supported
Convolution-Grouped Supported Supported Supported Not Supported Supported Supported
Convolution-Grouped 3D Not Supported Supported Not Supported Not Supported Not Supported Not Supported
Convolution-Ordinary Supported Supported Supported Supported Supported Supported
Convolution-Ordinary 3D Not Supported Supported Not Supported Not Supported Not Supported Not Supported
Crop Supported Supported Supported Supported Not Supported Supported
CTCGreedyDecoder Supported Supported Supported Not Supported Not Supported Supported
Deconvolution Supported Supported Supported Not Supported Supported Supported
Deconvolution 3D Not Supported Supported Not Supported Not Supported Not Supported Not Supported
DetectionOutput Supported Supported Supported Not Supported Not Supported Supported
Eltwise-Max Supported SupportedSupported Not Supported Not Supported Supported
Eltwise-Mul Supported SupportedSupported Supported Not Supported Supported
Eltwise-Sum Supported SupportedSupported Supported Supported Supported
Flatten Supported Supported Supported Not Supported Not Supported Supported
FullyConnected (Inner Product) Supported SupportedSupported Supported Supported Supported
Gather Not Supported Supported Not Supported Not Supported Not Supported Supported
Gemm Not Supported Supported Not Supported Not Supported Not Supported Supported
GRN Supported Supported Supported Not Supported Not Supported Supported
Interp Supported Supported Supported Not Supported Not Supported Supported
LRN (Norm) Supported Supported Supported Not Supported Supported Supported
LSTMCell Supported Supported Not Supported Not Supported Not Supported Not Supported
GRUCell Supported Supported Not Supported Not Supported Not Supported Not Supported
RNNCell Supported Supported Not Supported Not Supported Not Supported Not Supported
LSTMSequence Supported Supported Not Supported Not Supported Not Supported Not Supported
GRUSequence Supported Supported Not Supported Not Supported Not Supported Not Supported
RNNSequence Supported Supported Not Supported Not Supported Not Supported Not Supported
Memory Not Supported Supported Not Supported Supported Not Supported Supported
MVN Supported Supported Supported Not Supported Not Supported Supported
Normalize Supported Supported Supported Not Supported Not Supported Supported
Pad Supported Supported Supported Not Supported Not Supported Supported
Permute Supported Supported Supported Supported Not Supported Supported
Pooling(AVG,MAX) Supported Supported Supported Supported Supported Supported
Pooling(AVG,MAX) 3D Not Supported Supported Not Supported Not Supported Not Supported Not Supported
Power Supported Supported Supported Supported Supported Supported
PriorBox Supported Supported Supported Not Supported Not Supported Supported
PriorBoxClustered Supported Supported Supported Not Supported Not Supported Supported
Proposal Supported Supported Supported Not Supported Not Supported Supported
PSROIPooling Supported Supported Supported Not Supported Not Supported Supported
RegionYolo Supported Supported Supported Not Supported Not Supported Supported
ReorgYolo Supported Supported Supported Not Supported Not Supported Supported
Resample Supported Supported Supported Not Supported Not Supported Supported
Reshape Supported SupportedSupported Supported Not Supported Supported
RNN Not Supported Supported Supported Not Supported Not Supported Not Supported
ROIPooling Supported Supported Supported Not Supported Not Supported Supported
ScaleShift Supported SupportedSupported Supported Supported Supported
SimplerNMS Supported Supported Not Supported Not Supported Not Supported Supported
Slice Supported SupportedSupported Supported Supported Supported
SoftMax Supported SupportedSupported Not Supported Not Supported Supported
SpatialTransformer Not Supported Supported Not Supported Not Supported Not Supported Supported
Split Supported SupportedSupported Supported Supported Supported
TensorIterator Not Supported Supported Not Supported Not Supported Not Supported Not Supported
Tile Supported SupportedSupported Not Supported Not Supported Supported
Unpooling Supported Not Supported Not Supported Not Supported Not Supported Not Supported
Upsampling Supported Not Supported Not Supported Not Supported Not Supported Not Supported

OpenVINO - Python API

https://docs.openvinotoolkit.org/latest/_inference_engine_ie_bridges_python_docs_api_overview.html



Environment construction procedure

1. Work with LaptopPC (Ubuntu 16.04)

1.OpenVINO 2019R1.0.1 Full-Install. Execute the following command.

$ cd ~
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1ciX7cHqCh8lLFYI0HKkhC3r_fMirrlKk" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1ciX7cHqCh8lLFYI0HKkhC3r_fMirrlKk" -o l_openvino_toolkit_p_2019.1.133.tgz
$ tar -zxf l_openvino_toolkit_p_2019.1.133.tgz
$ rm l_openvino_toolkit_p_2019.1.133.tgz
$ cd l_openvino_toolkit_p_2019.1.133
$ sudo -E ./install_openvino_dependencies.sh

## GUI version installer
$ sudo ./install_GUI.sh
 or
## CUI version installer
$ sudo ./install.sh

2.Configure the Model Optimizer. Execute the following command.

$ cd /opt/intel/openvino/install_dependencies/
$ sudo -E ./install_openvino_dependencies.sh
$ nano ~/.bashrc
source /opt/intel/openvino/bin/setupvars.sh

$ source ~/.bashrc
$ cd /opt/intel/openvino/deployment_tools/model_optimizer/install_prerequisites/
$ sudo ./install_prerequisites.sh

3.【Optional execution】 Additional installation steps for the Intel® Movidius™ Neural Compute Stick v1 and Intel® Neural Compute Stick v2

$ sudo usermod -a -G users "$(whoami)"
$ cat <<EOF > 97-usbboot.rules
SUBSYSTEM=="usb", ATTRS{idProduct}=="2150", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
EOF

$ sudo cp 97-usbboot.rules /etc/udev/rules.d/
$ sudo udevadm control --reload-rules
$ sudo udevadm trigger
$ sudo ldconfig
$ rm 97-usbboot.rules

4.【Optional execution】 Additional installation steps for processor graphics (GPU, Intel HD Graphics series only)

$ cd /opt/intel/openvino/install_dependencies/
$ sudo -E su
$ uname -r
4.15.0-42-generic #<--- display kernel version sample

### Execute only when the kernel version is older than 4.14
$ ./install_4_14_kernel.sh

$ ./install_NEO_OCL_driver.sh
$ sudo reboot

2. Work with RaspberryPi (Raspbian Stretch)

[Note] Only the execution environment is introduced.

1.Execute the following command.

$ sudo apt update
$ sudo apt upgrade
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1NFt6g6ZkneHioU2P7rUJ8BFpQhIazbym" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1NFt6g6ZkneHioU2P7rUJ8BFpQhIazbym" -o l_openvino_toolkit_raspbi_p_2019.1.133.tgz
$ tar -zxvf l_openvino_toolkit_raspbi_p_2019.1.133.tgz
$ rm l_openvino_toolkit_raspbi_p_2019.1.133.tgz
$ sed -i "s|<INSTALLDIR>|$(pwd)/inference_engine_vpu_arm|" inference_engine_vpu_arm/bin/setupvars.sh

2.Execute the following command.

$ nano ~/.bashrc
### Add 1 row below
source /home/pi/inference_engine_vpu_arm/bin/setupvars.sh

$ source ~/.bashrc
### Successful if displayed as below
[setupvars.sh] OpenVINO environment initialized

$ sudo usermod -a -G users "$(whoami)"
$ sudo reboot

3.Update USB rule.

$ sh inference_engine_vpu_arm/install_dependencies/install_NCS_udev_rules.sh
### It is displayed as follows
Update udev rules so that the toolkit can communicate with your neural compute stick
[install_NCS_udev_rules.sh] udev rules installed

[Note] OpenCV 4.1.0 will be installed without permission when the work is finished. If you do not want to affect other environments, please edit environment variables after installation is completed.

Training with your own data set

See the article below.
A sample of one-class training with Darknet and tiny-YoloV3.
https://qiita.com/PINTO/items/7dd7135085a7249bf17a#support-for-local-training-and-openvino-of-one-class-tiny-yolov3-with-a-proprietary-data-set



How to install Bazel (version 0.17.2, x86_64 only)

1. Bazel introduction command

$ cd ~
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1dvR3pdM6vtkTWqeR-DpgVUoDV0EYWil5" -o bazel
$ sudo cp ./bazel /usr/local/bin
$ rm ./bazel

2. Supplementary information

https://github.com/PINTO0309/Bazel_bin.git

How to check the graph structure of a ".pb" file [Part.1]

Simple structure analysis.

1. Build and run graph structure analysis program

$ cd ~
$ git clone -b v1.11.0 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow
$ git checkout -b v1.11.0
$ bazel build tensorflow/tools/graph_transforms:summarize_graph
$ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --in_graph=xxxx.pb

2. Sample of display result

YoloV3

Found 1 possible inputs: (name=inputs, type=float(1), shape=[?,416,416,3]) 
No variables spotted.
Found 1 possible outputs: (name=output_boxes, op=ConcatV2) 
Found 62002034 (62.00M) const parameters, 0 (0) variable parameters, and 0 control_edges
Op types used: 536 Const, 372 Identity, 87 Mul, 75 Conv2D, 72 FusedBatchNorm, 72 Maximum, 28 Add, \
24 Reshape, 14 ConcatV2, 9 Sigmoid, 6 Tile, 6 Range, 5 Pad, 4 SplitV, 3 Pack, 3 RealDiv, 3 Fill, \
3 Exp, 3 BiasAdd, 2 ResizeNearestNeighbor, 2 Sub, 1 Placeholder
To use with tensorflow/tools/benchmark:benchmark_model try these arguments:
bazel run tensorflow/tools/benchmark:benchmark_model -- \
--graph=/home/b920405/git/OpenVINO-YoloV3/pbmodels/frozen_yolo_v3.pb \
--show_flops \
--input_layer=inputs \
--input_layer_type=float \
--input_layer_shape=-1,416,416,3 \
--output_layer=output_boxes

tiny-YoloV3

Found 1 possible inputs: (name=inputs, type=float(1), shape=[?,416,416,3]) 
No variables spotted.
Found 1 possible outputs: (name=output_boxes, op=ConcatV2) 
Found 8858858 (8.86M) const parameters, 0 (0) variable parameters, and 0 control_edges
Op types used: 134 Const, 63 Identity, 21 Mul, 16 Reshape, 13 Conv2D, 11 FusedBatchNorm, 11 Maximum, \
10 ConcatV2, 6 Sigmoid, 6 MaxPool, 4 Tile, 4 Add, 4 Range, 3 RealDiv, 3 SplitV, 2 Pack, 2 Fill, \
2 Exp, 2 Sub, 2 BiasAdd, 1 Placeholder, 1 ResizeNearestNeighbor
To use with tensorflow/tools/benchmark:benchmark_model try these arguments:
bazel run tensorflow/tools/benchmark:benchmark_model -- \
--graph=/home/b920405/git/OpenVINO-YoloV3/pbmodels/frozen_tiny_yolo_v3.pb \
--show_flops \
--input_layer=inputs \
--input_layer_type=float \
--input_layer_shape=-1,416,416,3 \
--output_layer=output_boxes

How to check the graph structure of a ".pb" file [Part.2]

Convert to text format.

1. Run graph structure analysis program

$ python3 tfconverter.py
### ".pbtxt" in ProtocolBuffer format is output.
### The size of the generated text file is huge.

How to check the graph structure of a ".pb" file [Part.3]

Use Tensorboard.

1. Run log output program for Tensorboard

import tensorflow as tf
from tensorflow.python.platform import gfile

with tf.Session() as sess:
    model_filename ="xxxx.pb"
    with gfile.FastGFile(model_filename, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        g_in = tf.import_graph_def(graph_def)

    LOGDIR="path/to/logs"
    train_writer = tf.summary.FileWriter(LOGDIR)
    train_writer.add_graph(sess.graph)

2. Starting Tensorboard

$ tensorboard --logdir=path/to/logs

3. Display of Tensorboard

Access http://localhost:6006 from the browser.

How to check the graph structure of a ".pb" file [Part.4]

Use netron.

1. Install netron

$ sudo -H pip3 install netron

2. Starting netron

$ netron -b [MODEL_FILE]

3. Display of netron

Access http://localhost:8080 from the browser.
07

Neural Compute Stick 2

https://ncsforum.movidius.com/discussion/1302/intel-neural-compute-stick-2-information

Issue

OpenVINO failing on YoloV3's YoloRegion, only one working on FP16, all working on FP32
Regarding YOLO family networks on NCS2. Possibly a work-around
Convert YOLOv3 Model to IR

Reference

https://github.com/opencv/opencv/wiki/Intel%27s-Deep-Learning-Inference-Engine-backend https://github.com/opencv/opencv/wiki/Intel%27s-Deep-Learning-Inference-Engine-backend#raspbian-stretch