Inspired by GNNPapers.
Abbreviation | Full Name | -2nd | -1st | Latest |
---|---|---|---|---|
SIGMOD | International Conference on Management of Data | 2019 | 2020 | 2021 |
VLDB | International Conference on Very large Databases | 2019 | 2020 | 2021 |
ICDE | International Conference on Data Engineering | 2019 | 2020 | 2021 |
CIDR | The Conference on Innovative Data Systems Research | 2017 | 2019 | 2020 |
EDBT/ICDT | International Conference on Extending Database Technology | 2018 | 2019 | 2020 |
DEEM | Workshop on Data Management for End-To-End Machine Learning | 2018 | 2019 | 2020 |
aiDM | International Workshop on Exploiting Artificial Intelligence Techniques for Data Management | 2018 | 2019 | 2020 |
Note: After entering the resource page, search the keyword to find the corresponding category (such as optimization), you can see the receiving papers under the research category.
Advanced Database Systems-CMU-15721-Spring2020
TPC The TPC Benchmark™H (TPC-H) is a decision support benchmark.
IMDB Subsets of IMDb data are available for access to customers for personal and non-commercial use.
JOB Join Order Benchmark (JOB).
TPC-H Query Plan Visualization
-
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations and Trends in Databases 2012. book
Graham Cormode, Minos Garofalakis, Peter J. Haas and Chris Jermaine.
-
How good are query optimizers, really?. VLDB 2015. [paper,github]
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
-
Database Meets Deep Learning: Challenges and Opportunities. SIGMOD 2016. paper
Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian-Lee Tan.
-
Query optimization through the looking glass, and what we found running the Join Order Benchmark. The VLDB Journal — The International Journal on Very Large Data Bases 2018. paper
Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
-
基于机器学习的数据库技术综述. 计算机学报, 2020. paper
李国良,周煊赫,孙佶,余翔,袁海涛,刘佳斌 ,韩越.
-
Equi-depth multidimensional histograms. SIGMOD 1988. paper
M. Muralikrishna and David J. DeWitt.
-
Selectivity Estimation Without the Attribute Value Independence Assumption. VLDB 1997. paper
Viswanath Poosala and Yannis E. Ioannidis.
-
The history of histograms (abridged). VLDB 2003 . paper
Yannis Ioannidis.
-
A linear-time probabilistic counting algorithm for database applications. ACM Transactions on Database SystemsJune 1990. paper
Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor.
-
Loglog Counting of Large Cardinalities. ESA 2003. paper
Marianne Durand and Philippe Flajolet.
-
An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms,Volume 55, Issue 1,2005. paper
Graham Cormode and S. Muthukrishnan.
-
HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. Analysis of Algorithms 2007paper
Philippe Flajolet,Éric Fusy,Olivier Gandouet,Frédéric Meunier.
-
Approximate computation of multidimensional aggregates of sparse data using wavelets. SIGMOD 1999. paper
Jeffrey Scott Vitter and Min Wang.
-
Approximate query processing using wavelets. The VLDB Journal — The International Journal on Very Large Data BasesSeptember,2001. paper
Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
-
Cardinality Estimation Done Right:Index-Based Join Sampling. CIDR 2017. paper
Viktor Leis, B. Radke, Andrey Gubichev, A. Kemper, T. Neumann.
-
Learned Cardinalities:Estimating Correlated Joins with Deep Learning. CIDR,2019. [paper,github]
Andreas Kipf,Thomas Kipfm,Bernhard Radke,Viktor Leis,Peter Boncz,Alfons Kemper.
-
Estimating Cardinalities with Deep Sketches. SIGMOD 2019. paper
Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper.
-
An end-to-end learning-based cost estimator. VLDB 2019. paper
Sun Ji, and Guoliang Li.
-
Monotonic Cardinality Estimation of Similarity Selection: A Deep Learning Approach. SIGMOD 2020 . paper
Yaoshu Wang, Chuan Xiao, Jianbin Qin, Xin Cao, Yifang Sun, Wei Wang, and Makoto Onizuka.
-
Fauce: Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. VLDB 2021.paper
Jie Liu, Wenqian Dong, Dong Li, Qingqing Zhou.
-
FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. VLDB 2021.paper
Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng (Alibaba Group), Andreas Pfadler, Zhengping Qian, Jingren Zhou Bin Cui.
-
Selectivity Estimation Without the Attribute Value Independence Assumption. VLDB 1997. pdf
Viswanath Poosala and Yannis E. Ioannidis.
-
Selectivity estimation using probabilistic models. VLDB 2001. paper
Lise Getoor, Benjamin Taskar, and Daphne Koller.
-
Learning State Representations for Query Optimization with Deep Reinforcement Learning. DEEM 2018. paper
Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
-
Deep unsupervised cardinality estimation. VLDB 2019. [paper,github]
Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
-
NeuroCard: one cardinality estimator for all tables. VLDB 2020. [paper,github]
Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.
-
Deep Learning Models for Selectivity Estimation of Multi-Attribute Queries. SIGMOD 2020. paper
Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das.
-
Learning to Optimize Join Queries With Deep Reinforcement Learning. arxiv 2018. paper
Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, Ion Stoica.
-
Deep Reinforcement Learning for Join Order Enumeration. aiDM 2018 paper
Ryan Marcus and Olga Papaemmanouil.
-
Neo: A Learned Query Optimizer. VLDB 2019. paper
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul.
-
Plan-structured deep neural network models for query performance prediction. VLDB 2019. paper
Ryan Marcus and Olga Papaemmanouil.
-
Research challenges in deep reinforcement learning-based join query optimization. aiDM 2020. paper
Runsheng Benson Guo and Khuzaima Daudjee.
-
Reinforcement Learning with Tree-LSTM for Join Order Selection. ICDE 2020. [paper,code]
Xiang Yu,Guoliang Li,Chengliang Chai and Nan Tang.
-
Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB 2020. paper
Xuanhe Zhou, Ji Sun, Guoliang Li, Jianhua Feng.
-
Self-tuning performance of database systems based on fuzzy rules. FSKD'14: 11th International Conference on Fuzzy Systems and Knowledge Discovery ,2014. paper
Wei, Zhijie, Zuohua Ding, and Jueliang Hu.
-
BestConfig: tapping the performance potential of systems via automatic configuration tuning. SoCC '17: Proceedings of the 2017 Symposium on Cloud Computing, 2017. paper
Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang.
-
Automatic Database Management System Tuning Through Large-scale Machine Learning. SIGMOD 2017. paper
Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
-
An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning. SIGMOD 2019. paper
Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li.
-
An Adaptive Approach for Index Tuning with Learning Classifier Systems on Hybrid Storage Environments. HAIS 2018: Hybrid Artificial Intelligent Systems,2018. paper
Júlio Cesar NievolaDeborah Carvalho Ribeiro.
-
SkinnerDB: Regret-Bounded Query Evaluation via Reinforcement Learning. SIGMOD 2019. paper
Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan Jo, and Joseph Antonakakis.
-
Towards a Hands-Free Query Optimizer through Deep Learning. CIDR 2019. paper
Ryan Marcus and Olga Papaemmanouil.
-
Bao: Making Learned Query Optimization Practical. SIGMOD 2021. paper
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbu, Mohammad Alizadeh, Tim Kraska.
-
Are We Ready For Learned Cardinality Estimation?. VLDB 2021. paper
Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, Qingqing Zhou.
-
Make Your Database System Dream of Electric Sheep: Towards Self-Driving Operation.VLDB 2021.[paper,code]
Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim, Dana Van Aken, William Zhang