Skip to content

Tools to subset hydrofabrics, generate forcings, create default realizations for NGIAB

License

Notifications You must be signed in to change notification settings

CIROH-UA/NGIAB_data_preprocess

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NGIAB Data Preprocess

This repository contains tools for preparing data to run a next gen simulation using NGIAB. The tools allow you to select a catchment of interest on an interactive map, choose a date range, and prepare the data with just a few clicks!

map screenshot

Table of Contents

  1. What does this tool do?
  2. Requirements
  3. Installation and Running
  4. Development Installation
  5. Usage
  6. CLI Documentation

What does this tool do?

This tool prepares data to run a next gen simulation by creating a run package that can be used with NGIAB. It picks default data sources, the v20.1 hydrofabric and nwm retrospective v3 forcing data.

Requirements

  • This tool is officially supported on macOS or Ubuntu (tested on 22.04 & 24.04). To use it on Windows, please install WSL.

Installation and Running

# optional but highly encouraged: create a virtual environment
python3 -m venv env
source env/bin/activate
# installing and running the tool
pip install 'ngiab_data_preprocess[plot]' # [plot] needed to install the evaluation and plotting module
python -m map_app
# CLI instructions at the bottom of the README

The first time you run this command, it will download the hydrofabric and model parameter files from Lynker Spatial. If you already have them, place conus.gpkg and model_attributes.parquet into modules/data_sources/.

Development Installation

Click to expand installation steps

To install and run the tool, follow these steps:

  1. Clone the repository:
    git clone https://github.com/CIROH-UA/NGIAB_data_preprocess
    cd NGIAB_data_preprocess
  2. Create a virtual environment and activate it:
    python3 -m venv env
    source env/bin/activate
  3. Install the tool:
    pip install -e .
  4. Run the map app:
    python -m map_app

Usage

Running the command python -m map_app will open the app in a new browser tab. Alternatively, you can manually open it by going to http://localhost:5000 with the app running.

To use the tool:

  1. Select the catchment you're interested in on the map.
  2. Pick the time period you want to simulate.
  3. Click the following buttons in order:
    1. Create subset gpkg
    2. Create Forcing from Zarrs
    3. Create Realization

Once all the steps are finished, you can run NGIAB on the folder shown underneath the subset button.

Note: When using the tool, the output will be stored in the ./output/<your-input-feature>/ folder. There is no overwrite protection on the folders.

CLI Documentation

Click to expand CLI documentation

Arguments

  • -h, --help: Show the help message and exit.
  • -i INPUT_FEATURE, --input_feature INPUT_FEATURE: ID of feature to subset. Providing a prefix will automatically convert to catid, e.g., cat-5173 or gage-01646500 or wb-1234.
  • -l, --latlon: Use latitude and longitude instead of catid. Expects comma-separated values via the CLI, e.g., python -m ngiab_data_cli -i 54.33,-69.4 -l -s.
  • -g, --gage: Use gage ID instead of catid. Expects a single gage ID via the CLI, e.g., python -m ngiab_data_cli -i 01646500 -g -s.
  • -s, --subset: Subset the hydrofabric to the given feature.
  • -f, --forcings: Generate forcings for the given feature.
  • -r, --realization: Create a realization for the given feature.
  • --start_date START_DATE, --start START_DATE: Start date for forcings/realization (format YYYY-MM-DD).
  • --end_date END_DATE, --end END_DATE: End date for forcings/realization (format YYYY-MM-DD).
  • -o OUTPUT_NAME, --output_name OUTPUT_NAME: Name of the output folder.
  • -D, --debug: Enable debug logging.
  • --run: Automatically run Next Gen against the output folder.
  • --validate: Run every missing step required to run ngiab.
  • --eval: Evaluate performance of the model after running and plot streamflow at USGS gages.
  • -a, --all: Run all operations: subset, forcings, realization, run Next Gen, and evaluate.

Usage Notes

  • If your input has a prefix of gage-, you do not need to pass -g.
  • The -l, -g, -s, -f, -r flags can be combined like normal CLI flags. For example, to subset, generate forcings, and create a realization, you can use -sfr or -s -f -r.
  • When using the --all flag, it automatically sets subset, forcings, realization, run, and eval to True.
  • Using the --run flag automatically sets the --validate flag.

Examples

  1. Subset hydrofabric using catchment ID:

    python -m ngiab_data_cli -i cat-7080 -s
  2. Generate forcings using a single catchment ID:

    python -m ngiab_data_cli -i cat-5173 -f --start 2022-01-01 --end 2022-02-28
  3. Create realization using a lat/lon pair and output to a named folder:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -r --start 2022-01-01 --end 2022-02-28 -o custom_output
  4. Perform all operations using a lat/lon pair:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -s -f -r --start 2022-01-01 --end 2022-02-28
  5. Subset hydrofabric using gage ID:

    python -m ngiab_data_cli -i 10154200 -g -s
    # or
    python -m ngiab_data_cli -i gage-10154200 -s
  6. Generate forcings using a single gage ID:

    python -m ngiab_data_cli -i 01646500 -g -f --start 2022-01-01 --end 2022-02-28
  7. Run all operations, including Next Gen and evaluation/plotting:

    python -m ngiab_data_cli -i cat-5173 -a --start 2022-01-01 --end 2022-02-28

Output

The script creates an output folder named after the first catchment ID in the input file, the provided output name, or derived from the first lat/lon pair or gage ID. This folder will contain the results of the subsetting, forcings generation, realization creation, Next Gen run (if applicable), and evaluation (if applicable) operations.

About

Tools to subset hydrofabrics, generate forcings, create default realizations for NGIAB

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 69.9%
  • JavaScript 17.5%
  • CSS 6.8%
  • HTML 5.8%