Warning: this is a side-project in progress so many bugs could arise. Please raise an issue if this happens.
This package implements several Kernel Adaptive Filtering algorithms for research purposes. It aims to be easily extendable.
- Kernel Least Mean Squares (KLMS) -
KlmsFilter
- Exogenous Kernel Least Mean Squares (KLMS-X) -
KlmsxFilter
- Kernel Recursive Least Squares (KRLS) -
KrlsFilter
- Novelty (KLMS)
- Approximate Linear Dependency (KLRS)
- Delayed input support (KLMS)
- Adaptive kernel parameter learning (KLMS)
For a more visual comparison, check the latest features sheet.
Let's do a simple example using a KLMS Filter over given input and target arrays:
from kaftools.filters import KlmsFilter
from kaftools.kernels import GaussianKernel
klms = KlmsFilter(input, target)
klms.fit(learning_rate=0.1, kernel=GaussianKernel(sigma=0.1))
And that's it!