Skip to content

Commit

Permalink
some fix in PNL, still missing soem figures
Browse files Browse the repository at this point in the history
  • Loading branch information
Carreau committed Dec 26, 2010
1 parent d60d499 commit 2cb0459
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 6 deletions.
Binary file modified PNL/PNL.pdf
100755 → 100644
Binary file not shown.
13 changes: 7 additions & 6 deletions PNL/PNL.tex
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
\newcommand{\ud}{\mathrm{d}}
\newcommand{\der}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\derp}[3]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newenvironment{matrice}{ \left[ \begin{array} }{\end{array} \right]}

\title{Physique non-linéaire}

Expand Down Expand Up @@ -385,7 +386,7 @@ \section{?}

Pour examiner rapidement les non-linéarités, on ne résoud pas, on regarde simplement ce que leur présence change.
\begin{align}
-2 i \omega \derp{}{\theta_0}{t} - \frac{\Omega_0^2}{2} |\theta_0|^2 \theta_0 &= \Gamma \derp{2}{\theta_0}{x^2} \\
-2 i \omega \derp{}{\theta_0}{t} - \frac{\Omega_0^2}{2} |\theta_0|^2 \theta_0 &= \Gamma \derp{2}{\theta_0}{x} \\
& \tau_0 e^{i(qx + \omega t)} \\
- 2 i \omega_0 \omega \tau_0 &= - \Gamma q \tau_0 + \frac{\Omega_0^2}{2}\tau_0^3
\end{align}
Expand Down Expand Up @@ -511,7 +512,7 @@ \section{?}
\Omega \theta_0 - v_{0z} = \Delta \theta_0 \\
0 & - \Delta p_0 + R_a \derp{}{\theta_0}{z} \\
\frac{1}{P_r} \Omega \Delta V_{0z} = - \derp{}{\Delta p_0}{z} + \Delta^2 V_{0z} + R_a \Delta \theta \frac{1}{P_r} \Omega \Delta V_{0z} \\
&= - R_a \derp{2}{\theta_0}{z^2} + \Delta^2V_{0z} + R_a\Delta \theta \\
&= - R_a \derp{2}{\theta_0}{z} + \Delta^2V_{0z} + R_a\Delta \theta \\
\end{align}

On obtient un système de deux équations :
Expand Down Expand Up @@ -597,7 +598,7 @@ \section{?}
&= \Omega - A_0^2 - \Gamma \delta k^2 + 2 A_0^2 + \Gamma(\delta k^2 + q^2) \\
&= \Omega + A_0^2 + \Gamma q^2 \\
&= \pm \sqrt{4 \Gamma^2 \delta k^2 q^2 + A_0^4} \\
\Omega &= -(A_0^2 + q^2) \+ \sqrt{4 \Gamma^2 \delta k^2 q^2 + A_0^4}\\
\Omega &= -(A_0^2 + q^2) + \sqrt{4 \Gamma^2 \delta k^2 q^2 + A_0^4}\\
\end{align}

On a une instabilité si $\Omega>0$ et donc si $$A_0^2 + \Gamma q^2 < \sqrt{4 \Gamma^2 \delta k^2 q^2 + A_0^4} $$
Expand Down Expand Up @@ -640,7 +641,7 @@ \section{?}
S_0 \der{s}{t} &= -k_1 S_0 E_0 se + k_1 E_0 (1-e)\\
E_0 \der{e}{t} &= -k_1 SE_0 se + (k_1+k_2)E_0(1-e)\\
\frac{1}{k_1 E_0} \der{s}{t} &= - se + \frac{k_{-1}}{k_1 S_0}(1-e)\\
\frac{1}{k_ S_0}\der{e}{t} &= -se + \frac{k_1 + k_2}{k_1 S_0} (1-e)\\
\frac{1}{k_1 S_0}\der{e}{t} &= -se + \frac{k_1 + k_2}{k_1 S_0} (1-e)\\
\tau_1 &= \frac{1}{k_1 E_0} \\
\tau_2 &= \frac{1}{k_1 S_0} \\
\end{align}
Expand Down Expand Up @@ -781,12 +782,12 @@ \section{?}
Re(z^n) &= r^n \cos n \theta \\
Re(z^{-n}) &= r^{-n} \cos n \theta \\
\Phi &= \Phi_0 + a_n(t) r^{-n} \cos n \theta \\
R &= R_0(t) (1 + \epsilon_n(t) \os n \theta)\\
R &= R_0(t) (1 + \epsilon_n(t) \cos n \theta)\\
\vec{r} &= R \vec{e_r}\\
\vec{z} &= \begin{matrice}{c} \der{R}{\theta} \\ R \end{matrice} \\
\vec{N} &= \begin{matrice}{c} \frac{R}{\sqrt{R^2 + R'^2}} \\ - \frac{R'}{\sqrt{R^2 + R'^2}} \end{matrice} \\
&= \begin{matrice}{c} 1 \\ - \frac{R_0 \epsilon_n n \sin n\theta}{R_0} \end{matrice} \\
\vec{N} \vec{\nabla}\Phi &= \frac{\Phi_0}{R_0} (1 - \epsilon_n \cos n \theta) - n a_n R_0^{n-1}\os n \theta \\
\vec{N} \vec{\nabla}\Phi &= \frac{\Phi_0}{R_0} (1 - \epsilon_n \cos n \theta) - n a_n R_0^{n-1}\cos n \theta \\
&= \dot{R_0} + \dot{R_0} \epsilon_n \cos n \theta + R_0 \dot{\epsilon_n} \cos n \theta \\
\end{align}

Expand Down

0 comments on commit 2cb0459

Please sign in to comment.