Skip to content

Include Supervised learning:Logistic Regression、Multilayer perceptron and Deep Convolutional Network .And Unsupervised learning:Auto Encoders、Denoising Autoencoders、Stacked Denoising Auto-Encoders、Restricted Boltzmann Machines、Deep Belief Networks.

License

Notifications You must be signed in to change notification settings

Cathy-t/basic_AI_algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

basic_AI_algorithm

Supervised learning: Logistic Regression、Multilayer perceptron 、 Deep Convolutional Network and Long Short-term Memory. Unsupervised learning: Auto Encoders、Denoising Autoencoders、Stacked Denoising Auto-Encoders、Restricted Boltzmann Machines、Deep Belief Networks.

Dateset

使用Mnist数据集

数据集描述:

每张图是28 * 28的大小,在训练集中一共60000个样本,在测试集中一共是10000个样本,一共是10类手写数字。 其中在pytroch框架中torchvision.datasets中封装了Mnist数据集,可使用pytorch中的DataLoader来读取随机读取、显示和处理数据集。

为了更直观的理解数据集,利用matplotlib随机显示了16个训练集中的手写数字以及其对应标签,如下图:

Supervised_learning

Logistic Regression | 逻辑回归 | README

MLP | 多层感知机 | [README]

LeNet | 经典卷积神经网络之一 | [README]

LSTM | 长短期记忆网络 | [README]

Unsupervised_learning

Auto_Encoder | 自动编码器 | [README]

Denoising_Autoencoder | 降噪自动编码器 | [README]

Stacked_Denoising_Auto-Encoders | 堆叠降噪自动编码器 | [README]

Restricted_Boltzmann_Machines | 受限玻尔兹曼机 | [README]

Deep_Belief_Networks | 深度置信网络 | [README]

你可以直接查看pdf文件,有更详细的算法说明

https://github.com/Cathy-t/basic_AI_algorithm/blob/master/git_upload.pdf

小试牛刀,再接再励!

About

Include Supervised learning:Logistic Regression、Multilayer perceptron and Deep Convolutional Network .And Unsupervised learning:Auto Encoders、Denoising Autoencoders、Stacked Denoising Auto-Encoders、Restricted Boltzmann Machines、Deep Belief Networks.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages