Skip to content

Causal-Inference-ZeroToAll/CausalDeconv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

CausalDeconv

该项目涉及到目标是 Teach Machine Cause and effect 的两篇 Nature 论文:

  • Algorithmic Causal Deconvolution of Intertwined Programs and Networks by Generative Mechanism
  • Remodelling machine learning: An AI that thinks like a scientist

作为一个该论文的 ZerotoAll Project,它的目的是把该论文的尽可能详细清晰理解,并且做一些相关研究。

如下的 Youtube 视频 Remodelling machine learning: An AI that thinks like a scientist 是一个关于该论文思想核心最清晰的介绍。 Remodelling machine learning: An AI that thinks like a scientist

这是一个从 Zero To All 理解机器智能 Nature 文章 Causal deconvolution by algorithmic generative models 的项目。它包含如下的几个组成部分:

  • 论文的 ZeroToAll 理解Casual Deconvolution;在这里我们利用论文的latex源代码,从不同的角度去理解该论文,包括从论文的快速翻译出发,从论文的相关参考文献出发等等。
  • 论文的 Quick Intro with Colab。作为一个该论文的 Introduction Project,它的目的是把该论文的故事讲清楚。

Learning Casual Deconvolution From Zero to All.

About

Learning Casual Deconvolution From Zero to All

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published