Skip to content

[WACV2022] Official Code for the "DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks"

Notifications You must be signed in to change notification settings

Cheeun/DAQ-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks

Official implementation of our WACV 2022 paper.

Conda Environment setting

conda env create -f environment.yml --name DAQ
conda activate DAQ
conda install -c anaconda scikit-image

Dependencies

  • Python 3.6
  • PyTorch == 1.1.0
  • coloredlogs >= 14.0
  • scikit-image

Codes

Our implementation is based on EDSR(PyTorch).

Train

sh train_EDSR_x4.sh

Pretrained model to start training from can be accessed from Google Drive.

Test

sh test.sh edsr_baseline 2 2 4 (edsr_baseline w2a2qq4)
sh test.sh edsr_baseline 3 3 4 (edsr_baseline w3a3qq4)
sh test.sh edsr_baseline 4 4 4 (edsr_baseline w4a4qq4)
sh test.sh edsr_full 2 2 8 (edsr_full w2a2qq8)

Our pretrained model can be accessed from Google Drive.

Additional Results

Our model achieves the following performance (PSNR / SSIM) when trained for 60 epochs :

Model Precision (w/a) Set5 Set14 B100 Urban100
EDSR-baseline (x4) 32 / 32 32.10 / 0.894 28.58 / 0.781 27.56 / 0.736 26.04 / 0.785
EDSR-baseline-DAQ 4 / 4 31.85 / 0.887 28.38 / 0.776 27.42 / 0.732 25.73 / 0.772
EDSR-baseline-DAQ 3 / 3 31.66 / 0.884 28.19 / 0.771 27.28 / 0.728 25.40 / 0.762
EDSR-baseline-DAQ 2 / 2 31.01 / 0.871 27.89 / 0.762 27.09 / 0.719 24.88 / 0.740
Model Precision (w/a) Set5 Set14 B100 Urban100
RDN (x4) 32 / 32 32.24 / 0.896 28.67 / 0.784 27.63 / 0.738 26.29 / 0.792
RDN-DAQ 4 / 4 31.91 / 0.889 28.38 / 0.775 27.38 / 0.733 25.81 / 0.779
RDN-DAQ 3 / 3 31.57 / 0.883 28.18 / 0.771 27.27 / 0.728 25.47 / 0.765
RDN-DAQ 2 / 2 30.71 / 0.866 27.61 / 0.755 26.93 / 0.715 24.71 / 0.731
Model Precision (w/a) Set5 Set14 B100 Urban100
SRResNet (x4) 32 / 32 32.07 / 0.893 28.50 / 0.780 27.52 / 0.735 25.86 / 0.779
SRResNet-DAQ 4 / 4 31.85 / 0.889 28.41 / 0.777 27.45 / 0.732 25.70 / 0.772
SRResNet-DAQ 3 / 3 31.81 / 0.889 28.35 / 0.776 27.40 / 0.733 25.63 / 0.772
SRResNet-DAQ 2 / 2 31.57 / 0.886 28.19 / 0.773 27.30 / 0.729 25.39 / 0.765

Citation

@inproceedings{hong2022daq,
  title={DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks},
  author={Hong, Cheeun and Kim, Heewon and Baik, Sungyong and Oh, Junghun and Lee, Kyoung Mu},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={2675--2684},
  year={2022}
}

Contact

Email : cheeun914@snu.ac.kr

About

[WACV2022] Official Code for the "DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published