-
Notifications
You must be signed in to change notification settings - Fork 13
/
gcn3d.py
executable file
·214 lines (183 loc) · 8.84 KB
/
gcn3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
@Author: Zhi-Hao Lin
@Contact: r08942062@ntu.edu.tw
@Time: 2020/03/06
@Document: Basic operation/blocks of 3D-GCN
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from uti_tool import get_rotation
import time
def get_neighbor_index(vertices: "(bs, vertice_num, 3)", neighbor_num: int):
"""
Return: (bs, vertice_num, neighbor_num)
"""
bs, v, _ = vertices.size()
device = vertices.device
inner = torch.bmm(vertices, vertices.transpose(1, 2)) #(bs, v, v)
quadratic = torch.sum(vertices**2, dim= 2) #(bs, v)
distance = inner * (-2) + quadratic.unsqueeze(1) + quadratic.unsqueeze(2)
neighbor_index = torch.topk(distance, k= neighbor_num + 1, dim= -1, largest= False)[1]
neighbor_index = neighbor_index[:, :, 1:]
return neighbor_index
def get_nearest_index(target: "(bs, v1, 3)", source: "(bs, v2, 3)"):
"""
Return: (bs, v1, 1)
"""
inner = torch.bmm(target, source.transpose(1, 2)) #(bs, v1, v2)
s_norm_2 = torch.sum(source ** 2, dim= 2) #(bs, v2)
t_norm_2 = torch.sum(target ** 2, dim= 2) #(bs, v1)
d_norm_2 = s_norm_2.unsqueeze(1) + t_norm_2.unsqueeze(2) - 2 * inner
nearest_index = torch.topk(d_norm_2, k= 1, dim= -1, largest= False)[1]
return nearest_index
def indexing_neighbor(tensor: "(bs, vertice_num, dim)", index: "(bs, vertice_num, neighbor_num)" ):
"""
Return: (bs, vertice_num, neighbor_num, dim)
"""
bs, v, n = index.size()
# ss = time.time()
if bs==1:
# id_0 = torch.arange(bs).view(-1, 1,1)
tensor_indexed = tensor[torch.Tensor([[0]]).long(), index[0]].unsqueeze(dim=0)
else:
id_0 = torch.arange(bs).view(-1, 1, 1).long()
tensor_indexed = tensor[id_0, index]
# ee = time.time()
# print('tensor_indexed time: ', str(ee - ss))
return tensor_indexed
def get_neighbor_direction_norm(vertices: "(bs, vertice_num, 3)", neighbor_index: "(bs, vertice_num, neighbor_num)"):
"""
Return: (bs, vertice_num, neighobr_num, 3)
"""
# ss = time.time()
neighbors = indexing_neighbor(vertices, neighbor_index) # (bs, v, n, 3)
neighbor_direction = neighbors - vertices.unsqueeze(2)
neighbor_direction_norm = F.normalize(neighbor_direction, dim= -1)
return neighbor_direction_norm.float()
class Conv_surface(nn.Module):
"""Extract structure feafure from surface, independent from vertice coordinates"""
def __init__(self, kernel_num, support_num):
super().__init__()
self.kernel_num = kernel_num
self.support_num = support_num
self.relu = nn.ReLU(inplace= True)
self.directions = nn.Parameter(torch.FloatTensor(3, support_num * kernel_num))
self.initialize()
def initialize(self):
stdv = 1. / math.sqrt(self.support_num * self.kernel_num)
self.directions.data.uniform_(-stdv, stdv)
def forward(self,
neighbor_index: "(bs, vertice_num, neighbor_num)",
vertices: "(bs, vertice_num, 3)"):
"""
Return vertices with local feature: (bs, vertice_num, kernel_num)
"""
bs, vertice_num, neighbor_num = neighbor_index.size()
# ss = time.time()
neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index)
# R = get_rotation(0,0,0)
# R = torch.from_numpy(R).cuda()
# R = R.unsqueeze(0).repeat(bs,1,1).float() ## bs 3,3
# vertices2 = torch.bmm(R,vertices.transpose(1,2)).transpose(2,1)
# neighbor_direction_norm2 = get_neighbor_direction_norm(vertices2, neighbor_index)
support_direction_norm = F.normalize(self.directions, dim= 0) #(3, s * k)
theta = neighbor_direction_norm @ support_direction_norm # (bs, vertice_num, neighbor_num, s*k)
theta = self.relu(theta)
theta = theta.contiguous().view(bs, vertice_num, neighbor_num, self.support_num, self.kernel_num)
theta = torch.max(theta, dim= 2)[0] # (bs, vertice_num, support_num, kernel_num)
feature = torch.sum(theta, dim= 2) # (bs, vertice_num, kernel_num)
return feature
class Conv_layer(nn.Module):
def __init__(self, in_channel, out_channel, support_num):
super().__init__()
# arguments:
self.in_channel = in_channel
self.out_channel = out_channel
self.support_num = support_num
# parameters:
self.relu = nn.ReLU(inplace= True)
self.weights = nn.Parameter(torch.FloatTensor(in_channel, (support_num + 1) * out_channel))
self.bias = nn.Parameter(torch.FloatTensor((support_num + 1) * out_channel))
self.directions = nn.Parameter(torch.FloatTensor(3, support_num * out_channel))
self.initialize()
def initialize(self):
stdv = 1. / math.sqrt(self.out_channel * (self.support_num + 1))
self.weights.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
self.directions.data.uniform_(-stdv, stdv)
def forward(self,
neighbor_index: "(bs, vertice_num, neighbor_index)",
vertices: "(bs, vertice_num, 3)",
feature_map: "(bs, vertice_num, in_channel)"):
"""
Return: output feature map: (bs, vertice_num, out_channel)
"""
bs, vertice_num, neighbor_num = neighbor_index.size()
neighbor_direction_norm = get_neighbor_direction_norm(vertices, neighbor_index)
support_direction_norm = F.normalize(self.directions, dim= 0)
theta = neighbor_direction_norm @ support_direction_norm # (bs, vertice_num, neighbor_num, support_num * out_channel)
theta = self.relu(theta)
theta = theta.contiguous().view(bs, vertice_num, neighbor_num, -1)
# (bs, vertice_num, neighbor_num, support_num * out_channel)
feature_out = feature_map @ self.weights + self.bias # (bs, vertice_num, (support_num + 1) * out_channel)
feature_center = feature_out[:, :, :self.out_channel] # (bs, vertice_num, out_channel)
feature_support = feature_out[:, :, self.out_channel:] #(bs, vertice_num, support_num * out_channel)
# Fuse together - max among product
feature_support = indexing_neighbor(feature_support, neighbor_index) # (bs, vertice_num, neighbor_num, support_num * out_channel)
activation_support = theta * feature_support # (bs, vertice_num, neighbor_num, support_num * out_channel)
activation_support = activation_support.view(bs,vertice_num, neighbor_num, self.support_num, self.out_channel)
activation_support = torch.max(activation_support, dim= 2)[0] # (bs, vertice_num, support_num, out_channel)
activation_support = torch.sum(activation_support, dim= 2) # (bs, vertice_num, out_channel)
feature_fuse = feature_center + activation_support # (bs, vertice_num, out_channel)
return feature_fuse
class Pool_layer(nn.Module):
def __init__(self, pooling_rate: int= 4, neighbor_num: int= 4):
super().__init__()
self.pooling_rate = pooling_rate
self.neighbor_num = neighbor_num
def forward(self,
vertices: "(bs, vertice_num, 3)",
feature_map: "(bs, vertice_num, channel_num)"):
"""
Return:
vertices_pool: (bs, pool_vertice_num, 3),
feature_map_pool: (bs, pool_vertice_num, channel_num)
"""
bs, vertice_num, _ = vertices.size()
neighbor_index = get_neighbor_index(vertices, self.neighbor_num)
neighbor_feature = indexing_neighbor(feature_map, neighbor_index) #(bs, vertice_num, neighbor_num, channel_num)
pooled_feature = torch.max(neighbor_feature, dim= 2)[0] #(bs, vertice_num, channel_num)
pool_num = int(vertice_num / self.pooling_rate)
sample_idx = torch.randperm(vertice_num)[:pool_num]
vertices_pool = vertices[:, sample_idx, :] # (bs, pool_num, 3)
feature_map_pool = pooled_feature[:, sample_idx, :] #(bs, pool_num, channel_num)
return vertices_pool, feature_map_pool
def test():
import time
bs = 8
v = 1024
dim = 3
n = 20
vertices = torch.randn(bs, v, dim)
neighbor_index = get_neighbor_index(vertices, n)
s = 3
conv_1 = Conv_surface(kernel_num= 32, support_num= s)
conv_2 = Conv_layer(in_channel= 32, out_channel= 64, support_num= s)
pool = Pool_layer(pooling_rate= 4, neighbor_num= 4)
print("Input size: {}".format(vertices.size()))
start = time.time()
f1 = conv_1(neighbor_index, vertices)
print("\n[1] Time: {}".format(time.time() - start))
print("[1] Out shape: {}".format(f1.size()))
start = time.time()
f2 = conv_2(neighbor_index, vertices, f1)
print("\n[2] Time: {}".format(time.time() - start))
print("[2] Out shape: {}".format(f2.size()))
start = time.time()
v_pool, f_pool = pool(vertices, f2)
print("\n[3] Time: {}".format(time.time() - start))
print("[3] v shape: {}, f shape: {}".format(v_pool.size(), f_pool.size()))
if __name__ == "__main__":
test()