Presentation slides from BOSC (ISMB-ECCB) 2019: https://f1000research.com/slides/8-1183
pysradb
supports command line ussage. The documentation
is in progress. See cmdline for
some quick usage instructions. See quickstart for
a list of instructions for each sub-command.
$ pysradb usage: pysradb [-h] [--version] [--citation] {metadb,metadata,download,search,gse-to-gsm,gse-to-srp,gsm-to-gse,gsm-to-srp,gsm-to-srr,gsm-to-srs,gsm-to-srx,srp-to-gse,srp-to-srr,srp-to-srs,srp-to-srx,srr-to-gsm,srr-to-srp,srr-to-srs,srr-to-srx,srs-to-gsm,srs-to-srx,srx-to-srp,srx-to-srr,srx-to-srs} ... pysradb: Query NGS metadata and data from NCBI Sequence Read Archive. version: 0.9.0. Citation: 10.12688/f1000research.18676.1 optional arguments: -h, --help show this help message and exit --version show program's version number and exit --citation how to cite subcommands: {metadb,metadata,download,search,gse-to-gsm,gse-to-srp,gsm-to-gse,gsm-to-srp,gsm-to-srr,gsm-to-srs,gsm-to-srx,srp-to-gse,srp-to-srr,srp-to-srs,srp-to-srx,srr-to-gsm,srr-to-srp,srr-to-srs,srr-to-srx,srs-to-gsm,srs-to-srx,srx-to-srp,srx-to-srr,srx-to-srs} metadb Download SRAmetadb.sqlite metadata Fetch metadata for SRA project (SRPnnnn) download Download SRA project (SRPnnnn) search Search SRA for matching text gse-to-gsm Get GSM for a GSE gse-to-srp Get SRP for a GSE gsm-to-gse Get GSE for a GSM gsm-to-srp Get SRP for a GSM gsm-to-srr Get SRR for a GSM gsm-to-srs Get SRS for a GSM gsm-to-srx Get SRX for a GSM srp-to-gse Get GSE for a SRP srp-to-srr Get SRR for a SRP srp-to-srs Get SRS for a SRP srp-to-srx Get SRX for a SRP srr-to-gsm Get GSM for a SRR srr-to-srp Get SRP for a SRR srr-to-srs Get SRS for a SRR srr-to-srx Get SRX for a SRR srs-to-gsm Get GSM for a SRS srs-to-srx Get SRX for a SRS srx-to-srp Get SRP for a SRX srx-to-srr Get SRR for a SRX srx-to-srs Get SRS for a SRX
A Google Colaboratory version of most used commands are available in this Colab Notebook . Note that this does not require you to download the heavy SQLite file and uses the SRAWeb mode (explained below). A list of notebooks demonstrating the command line and API use cases are available in the notebooks directory.
To install stable version using pip:
pip install pysradb
Alternatively, if you use conda:
conda install -c bioconda pysradb
This step will install all the dependencies.
If you have an existing environment with a lot of pre-installed packages, conda might be slow.
Please consider creating a new enviroment for pysradb
:
conda create -c bioconda -n pysradb PYTHON=3 pysradb
pandas==0.25.3
tqdm==4.41.1
requests==2.22.0
xmltodict=0.12.0
sra-tools (required only if you want to also download)
NCBI has slowly transitioned towards using Google cloud for storing SRA files. As such
the ftp links are slowly getting obsolete. With release 0.9.5
, pysradb
has
moved to utilizing srapath
available through NCBI's sra-tools
for getting
the SRA location. Thus aspera-client
is no longer required. But, sra-tools
is now a requirement and can be installed through bioconda. We are in the process of
doing away with this requirement completely soon.
pysradb
can utilize a SQLite database file that has preprocessed metadata made available by the
SRAdb project.
Though, with the release 0.9.5
, this database file is not a hard requirement for any of the operations.
SRAmetadb can be downloaded using:
wget -c https://starbuck1.s3.amazonaws.com/sradb/SRAmetadb.sqlite.gz && gunzip SRAmetadb.sqlite.gz
Alternatively, you can also download it using pysradb
, which by default downloads it into your
current working directory:
$ pysradb metadb
You can also specify an alternate directory for download by supplying the --out-dir <OUT_DIR>
argument.
pip install -U pandas tqdm requests xmltodict
git clone https://github.com/saketkc/pysradb.git
cd pysradb
pip install -e .
Please see usage_scenarios for a few usage scenarios. Here are few hand-picked examples.
pysradb
's initial versions were completely dependent on the SRAmnetadb.sqlite
file made available by the SRAdb
project, we refer to this as the SRAmetadb
mode. However, with `pysradb 0.9.5
, the depedence on the SQLite file has been made optional. In the abseence of the SQLite file, the operations are performed usiNCBi's esrarch
and esummary
interface, a mode which we refer to as the SRAweb
mode. All the operations
with the exception of search
can be performed withoudownloading the SQLite file.
NOTE: The additional flags such as --desc
, -detailed
and -expand
are currently not fully supported in the SRAweb
mode and will be supported in a future release. However, all the basic funcuionality of interconverting one ID to another is available in both SRAweb
and SRAmetadb
mode.
Search for all projects containing "ribosome profiling":
$ pysradb search "ribosome profiling" | head study_accession experiment_accession sample_accession run_accession DRP000927 DRX002899 DRS002983 DRR003575 DRP000927 DRX002900 DRS002992 DRR003576 DRP000927 DRX002901 DRS003001 DRR003577 DRP000927 DRX002902 DRS003010 DRR003578 DRP000927 DRX002903 DRS003019 DRR003579 DRP000927 DRX002904 DRS003028 DRR003580 DRP000927 DRX002905 DRS003037 DRR003581 DRP000927 DRX002906 DRS003038 DRR003582 DRP003075 DRX019536 DRS026974 DRR021383
$ pysradb metadata --db ./SRAmetadb.sqlite SRP000941 --assay --desc --expand | head study_accession experiment_accession sample_accession run_accession library_strategy batch biomaterial_provider biomaterial_type cell_type collection_method differentiation_method differentiation_stage disease donor_age donor_ethnicity donor_health_status donor_id donor_sex line lineage medium molecule passage sample_term_id sex source_name tissue tissue_depot tissue_type SRP000941 SRX006235 SRS004118 SRR018454 ChIP-Seq NaN cellular dynamics international cell line NaN NaN none none none NaN NaN NaN NaN NaN h1 embryonic stem cell mteser genomic dna between 30 and 50 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006236 SRS004118 SRR018456 ChIP-Seq NaN cellular dynamics international cell line NaN NaN none none none NaN NaN NaN NaN NaN h1 embryonic stem cell mteser genomic dna between 30 and 50 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006237 SRS004118 SRR018455 ChIP-Seq NaN cellular dynamics international cell line NaN NaN none none none NaN NaN NaN NaN NaN h1 embryonic stem cell mteser genomic dna between 30 and 50 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019072 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019080 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019081 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019082 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019083 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN SRP000941 SRX006239 SRS004213 SRR019084 Bisulfite-Seq #2 thomson laboratory cell line NaN NaN na embryonic stem cell none NaN NaN NaN NaN NaN h1 na tesr genomic dna 27 efo_0003042 male NaN NaN NaN NaN
$ pysradb metadata --db ./SRAmetadb.sqlite SRP075720 --detailed --expand | head study_accession experiment_accession sample_accession run_accession experiment_title experiment_attribute taxon_id library_selection library_layout library_strategy library_source library_name bases spots adapter_spec avg_read_length developmental_stage retina_id source_name tissue SRP075720 SRX1800089 SRS1467259 SRR3587529 GSM2177186: Kcng4_1Ra_A10; Mus musculus; RNA-Seq GEO Accession: GSM2177186 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 79101650 1582033 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800090 SRS1467260 SRR3587530 GSM2177187: Kcng4_1Ra_A11; Mus musculus; RNA-Seq GEO Accession: GSM2177187 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 84573650 1691473 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800091 SRS1467261 SRR3587531 GSM2177188: Kcng4_1Ra_A12; Mus musculus; RNA-Seq GEO Accession: GSM2177188 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 77835550 1556711 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800092 SRS1467262 SRR3587532 GSM2177189: Kcng4_1Ra_A1; Mus musculus; RNA-Seq GEO Accession: GSM2177189 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 73905150 1478103 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800093 SRS1467263 SRR3587533 GSM2177190: Kcng4_1Ra_A2; Mus musculus; RNA-Seq GEO Accession: GSM2177190 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 77193150 1543863 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800094 SRS1467264 SRR3587534 GSM2177191: Kcng4_1Ra_A3; Mus musculus; RNA-Seq GEO Accession: GSM2177191 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 59205550 1184111 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800095 SRS1467265 SRR3587535 GSM2177192: Kcng4_1Ra_A4; Mus musculus; RNA-Seq GEO Accession: GSM2177192 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 61794700 1235894 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800096 SRS1467266 SRR3587536 GSM2177193: Kcng4_1Ra_A5; Mus musculus; RNA-Seq GEO Accession: GSM2177193 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 78437650 1568753 None 50.0 p17 1ra mus musculus retina__ p17 retina SRP075720 SRX1800097 SRS1467267 SRR3587537 GSM2177194: Kcng4_1Ra_A6; Mus musculus; RNA-Seq GEO Accession: GSM2177194 10090 cDNA SINGLE - RNA-Seq TRANSCRIPTOMIC None 77392700 1547854 None 50.0 p17 1ra mus musculus retina__ p17 retina
$ pysradb srp-to-gse SRP075720 study_accession study_alias SRP075720 GSE81903
$ pysradb gsm-to-srp GSM2177186 experiment_alias study_accession GSM2177186 SRP075720
$ pysradb gsm-to-gse GSM2177186 experiment_alias study_alias GSM2177186 GSE81903
$ pysradb gsm-to-srx GSM2177186 experiment_alias experiment_accession GSM2177186 SRX1800089
$ pysradb gsm-to-srr GSM2177186 experiment_alias run_accession GSM2177186 SRR3587529
Use the --detailed
flag:
$ pysradb gsm-to-srr --db ./SRAmetadb.sqlite GSM2177186 --detailed --desc --expand experiment_alias run_accession experiment_accession sample_accession study_accession run_alias sample_alias study_alias developmental_stage retina_id source_name tissue GSM2177186 SRR3587529 SRX1800089 SRS1467259 SRP075720 GSM2177186_r1 GSM2177186 GSE81903 p17 1ra mus musculus retina__ p17 retina
$ pysradb metadata SRP000941 --db ./SRAmetadb.sqlite --assay | tr -s ' ' | cut -f5 -d ' ' | sort | uniq -c 999 Bisulfite-Seq 768 ChIP-Seq 1 library_strategy 121 OTHER 353 RNA-Seq 28 WGS
pysradb
makes it super easy to download datasets from SRA.
$ pysradb download --out-dir ./pysradb_downloads -p SRP063852
Downloads are organized by SRP/SRX/SRR
mimicking the hiererachy of SRA projects.
$ pysradb metadata SRP000941 --assay | grep 'study\|RNA-Seq' | pysradb download
This will download all RNA-seq
samples coming from this project using aspera-client
, if available.
Alternatively, it can also use wget
.
These notebooks document all the possible features of pysradb:
Choudhary, Saket. "pysradb: A Python Package to Query next-Generation Sequencing Metadata and Data from NCBI Sequence Read Archive." F1000Research, vol. 8, F1000 (Faculty of 1000 Ltd), Apr. 2019, p. 532 (https://f1000research.com/articles/8-532/v1)
@article{Choudhary2019, doi = {10.12688/f1000research.18676.1}, url = {https://doi.org/10.12688/f1000research.18676.1}, year = {2019}, month = apr, publisher = {F1000 (Faculty of 1000 Ltd)}, volume = {8}, pages = {532}, author = {Saket Choudhary}, title = {pysradb: A {P}ython package to query next-generation sequencing metadata and data from {NCBI} {S}equence {R}ead {A}rchive}, journal = {F1000Research} }
Zenodo archive: https://zenodo.org/badge/latestdoi/159590788
Zenodo DOI: 10.5281/zenodo.2306881
A lot of functionality in pysradb
is based on ideas from the original SRAdb package. Please cite the original SRAdb publication:
Zhu, Yuelin, Robert M. Stephens, Paul S. Meltzer, and Sean R. Davis. "SRAdb: query and use public next-generation sequencing data from within R." BMC bioinformatics 14, no. 1 (2013): 19.
- Free software: BSD license
- Documentation: https://saketkc.github.io/pysradb