Skip to content

Tools for medical image processing in deep learning and PyTorch

License

Notifications You must be signed in to change notification settings

DanielGutmann/torchio

 
 

Repository files navigation

PyPI downloads PyPI version Google Colab Documentation status Build status Coverage status Code quality Code maintainability Slack


🎉 News: the paper is out! 🎉

See the Credits section below for more information.


Original Random blur
Original Random blur
Random flip Random noise
Random flip Random noise
Random affine transformation Random elastic transformation
Random affine transformation Random elastic transformation
Random bias field artifact Random motion artifact
Random bias field artifact Random motion artifact
Random spike artifact Random ghosting artifact
Random spike artifact Random ghosting artifact

TorchIO is a Python package containing a set of tools to efficiently read, sample and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet.

The documentation is hosted on Read the Docs.

Please create a new issue if you think something is missing.

Credits

If you like this repository, please click on Star!

If you use this package for your research, please cite the paper:

Pérez-García et al., 2020, TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.

BibTeX entry:

@misc{fern2020torchio,
    title={TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
    author={Fernando Pérez-García and Rachel Sparks and Sebastien Ourselin},
    year={2020},
    eprint={2003.04696},
    archivePrefix={arXiv},
    primaryClass={eess.IV}
}

About

Tools for medical image processing in deep learning and PyTorch

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.8%
  • Makefile 1.2%