Daniele Passabì
The natively supported apps follows.
Application | Store Link |
---|---|
dummy | a simple run with toy data |
fleur | https://apps.apple.com/it/app/fleur-gestione-spese-e-budget/id1621020173 |
1money | https://play.google.com/store/apps/details?id=org.pixelrush.moneyiq&hl=it&pli=1 |
inbank | https://play.google.com/store/apps/details?id=it.phoenixspa.inbank&hl=it&gl=US |
If your app is not supported, do not worry!
You can launch a run with app=custom
, providing also your specific app_custom_dict
.
The latter is a dictionary with all the needed transformations to obtain a dataset with the following structure:
Index | Date | Transaction Type | Account | Category | Amount | Notes |
---|---|---|---|---|---|---|
0 | 2023-06-30 | Spesa | Risparmi | Food | 2.00 | NaN |
1 | 2023-06-28 | Spesa | Risparmi | Food | 20.00 | NaN |
2 | 2023-06-28 | Spesa | Risparmi | Car | 42.35 | NaN |
Here's an example of a app_custom_dict
:
{
'delete_rows': {
'start': 0,
'end': -5
},
'columns_to_drop': ['TAG','VALUTA 2','IMPORTO 2','VALUTA'],
'columns_to_rename': {
'DATA': 'Date',
'TIPOLOGIA': 'Transaction Type',
'AL CONTO / ALLA CATEGORIA': 'Category',
'IMPORTO': 'Amount',
'NOTE': 'Notes',
'DAL CONTO': 'Account'
},
'values_to_rename': {
'Transaction Type': {
'Entrata': 'Reddito'
}
},
'date_format': '%d/%m/%y'
}
It follows an example of report, generated using some dummy data for the year 2023.