|
1 |
| - |
2 |
| - |
3 |
| -# **1174. Immediate Food Delivery II** |
4 |
| - |
5 |
| -## **Problem Statement** |
6 |
| -You are given a table `Delivery` that records food deliveries made to customers. Each row represents an order with the date it was placed and the customer’s preferred delivery date. |
7 |
| - |
8 |
| ---- |
9 |
| - |
10 |
| -## **Delivery Table** |
11 |
| -``` |
12 |
| -+-------------+-------------+------------+-----------------------------+ |
13 |
| -| Column Name | Type | Description | |
14 |
| -+-------------+-------------+----------------------------------------------+ |
15 |
| -| delivery_id | int | Unique identifier for the delivery | |
16 |
| -| customer_id | int | Identifier for the customer | |
17 |
| -| order_date | date | Date when the order was placed | |
18 |
| -| customer_pref_delivery_date | date | Customer’s preferred delivery date | |
19 |
| -+-------------+-------------+----------------------------------------------+ |
20 |
| -``` |
21 |
| -- `delivery_id` is the **primary key**. |
22 |
| -- Each customer specifies a preferred delivery date, which can be the same as or after the order date. |
23 |
| - |
24 |
| ---- |
25 |
| - |
26 |
| -## **Task:** |
27 |
| -Calculate the **percentage** of customers whose **first order** is **immediate** (i.e., the order date is the same as the customer’s preferred delivery date). |
28 |
| -- A customer’s **first order** is defined as the order with the **earliest order_date** for that customer. |
29 |
| -- The result should be **rounded to 2 decimal places**. |
30 |
| -- Return the percentage as `immediate_percentage`. |
31 |
| - |
32 |
| ---- |
33 |
| - |
34 |
| -## **Example 1:** |
35 |
| - |
36 |
| -### **Input:** |
37 |
| -**Delivery Table** |
38 |
| -``` |
39 |
| -+-------------+-------------+------------+-----------------------------+ |
40 |
| -| delivery_id | customer_id | order_date | customer_pref_delivery_date | |
41 |
| -+-------------+-------------+------------+-----------------------------+ |
42 |
| -| 1 | 1 | 2019-08-01 | 2019-08-02 | |
43 |
| -| 2 | 2 | 2019-08-02 | 2019-08-02 | |
44 |
| -| 3 | 1 | 2019-08-11 | 2019-08-12 | |
45 |
| -| 4 | 3 | 2019-08-24 | 2019-08-24 | |
46 |
| -| 5 | 3 | 2019-08-21 | 2019-08-22 | |
47 |
| -| 6 | 2 | 2019-08-11 | 2019-08-13 | |
48 |
| -| 7 | 4 | 2019-08-09 | 2019-08-09 | |
49 |
| -+-------------+-------------+------------+-----------------------------+ |
50 |
| -``` |
51 |
| - |
52 |
| -### **Output:** |
53 |
| -``` |
54 |
| -+----------------------+ |
55 |
| -| immediate_percentage | |
56 |
| -+----------------------+ |
57 |
| -| 50.00 | |
58 |
| -+----------------------+ |
59 |
| -``` |
60 |
| - |
61 |
| -### **Explanation:** |
62 |
| -- **Customer 1:** First order is on **2019-08-01** (preferred: 2019-08-02) → **Scheduled** |
63 |
| -- **Customer 2:** First order is on **2019-08-02** (preferred: 2019-08-02) → **Immediate** |
64 |
| -- **Customer 3:** First order is on **2019-08-21** (preferred: 2019-08-22) → **Scheduled** |
65 |
| -- **Customer 4:** First order is on **2019-08-09** (preferred: 2019-08-09) → **Immediate** |
66 |
| - |
67 |
| -Out of 4 customers, 2 have immediate first orders. |
68 |
| -Percentage = (2 / 4) * 100 = **50.00** |
69 |
| - |
70 |
| ---- |
71 |
| - |
72 |
| -## **SQL Solutions** |
73 |
| - |
74 |
| -### **1️⃣ Standard MySQL Solution** |
75 |
| -```sql |
76 |
| -SELECT |
77 |
| - ROUND(100 * SUM(CASE |
78 |
| - WHEN first_orders.order_date = first_orders.customer_pref_delivery_date THEN 1 |
79 |
| - ELSE 0 |
80 |
| - END) / COUNT(*), 2) AS immediate_percentage |
81 |
| -FROM ( |
82 |
| - -- Get the first order (earliest order_date) for each customer |
83 |
| - SELECT customer_id, order_date, customer_pref_delivery_date |
84 |
| - FROM Delivery |
85 |
| - WHERE (customer_id, order_date) IN ( |
86 |
| - SELECT customer_id, MIN(order_date) |
87 |
| - FROM Delivery |
88 |
| - GROUP BY customer_id |
89 |
| - ) |
90 |
| -) AS first_orders; |
91 |
| -``` |
92 |
| - |
93 |
| -#### **Explanation:** |
94 |
| -- **Subquery:** Retrieves the first order for each customer by selecting the minimum `order_date`. |
95 |
| -- **Outer Query:** |
96 |
| - - Uses a `CASE` statement to check if the `order_date` equals `customer_pref_delivery_date` (i.e., immediate order). |
97 |
| - - Calculates the percentage of immediate first orders. |
98 |
| - - Rounds the result to 2 decimal places. |
99 |
| - |
100 |
| ---- |
101 |
| - |
102 |
| -### **2️⃣ Window Function (SQL) Solution** |
103 |
| -```sql |
104 |
| -WITH RankedOrders AS ( |
105 |
| - SELECT |
106 |
| - customer_id, |
107 |
| - order_date, |
108 |
| - customer_pref_delivery_date, |
109 |
| - ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date) AS rn |
110 |
| - FROM Delivery |
111 |
| -) |
112 |
| -SELECT |
113 |
| - ROUND(100 * SUM(CASE WHEN order_date = customer_pref_delivery_date THEN 1 ELSE 0 END) / COUNT(*), 2) AS immediate_percentage |
114 |
| -FROM RankedOrders |
115 |
| -WHERE rn = 1; |
116 |
| -``` |
117 |
| - |
118 |
| -#### **Explanation:** |
119 |
| -- **CTE `RankedOrders`:** |
120 |
| - - Uses `ROW_NUMBER()` to rank orders for each customer by `order_date`. |
121 |
| - - Filters for the first order of each customer (`rn = 1`). |
122 |
| -- **Final SELECT:** |
123 |
| - - Computes the percentage of first orders that are immediate. |
124 |
| - - Rounds the result to 2 decimal places. |
125 |
| - |
126 |
| ---- |
127 |
| - |
128 |
| -## **Pandas Solution (Python)** |
129 |
| -```python |
130 |
| -import pandas as pd |
131 |
| - |
132 |
| -def immediate_food_delivery_percentage(delivery: pd.DataFrame) -> pd.DataFrame: |
133 |
| - # Ensure order_date and customer_pref_delivery_date are in datetime format |
134 |
| - delivery['order_date'] = pd.to_datetime(delivery['order_date']) |
135 |
| - delivery['customer_pref_delivery_date'] = pd.to_datetime(delivery['customer_pref_delivery_date']) |
136 |
| - |
137 |
| - # Get the first order date for each customer |
138 |
| - first_order = delivery.groupby('customer_id')['order_date'].min().reset_index() |
139 |
| - first_order = first_order.rename(columns={'order_date': 'first_order_date'}) |
140 |
| - |
141 |
| - # Merge to get the corresponding preferred delivery date for the first order |
142 |
| - merged = pd.merge(delivery, first_order, on='customer_id', how='inner') |
143 |
| - first_orders = merged[merged['order_date'] == merged['first_order_date']] |
144 |
| - |
145 |
| - # Calculate immediate orders |
146 |
| - immediate_count = (first_orders['order_date'] == first_orders['customer_pref_delivery_date']).sum() |
147 |
| - total_customers = first_orders['customer_id'].nunique() |
148 |
| - immediate_percentage = round(100 * immediate_count / total_customers, 2) |
149 |
| - |
150 |
| - return pd.DataFrame({'immediate_percentage': [immediate_percentage]}) |
151 |
| - |
152 |
| -# Example usage: |
153 |
| -# df = pd.read_csv('delivery.csv') |
154 |
| -# print(immediate_food_delivery_percentage(df)) |
155 |
| -``` |
156 |
| - |
157 |
| -#### **Explanation:** |
158 |
| -- **Convert Dates:** |
159 |
| - - Convert `order_date` and `customer_pref_delivery_date` to datetime for accurate comparison. |
160 |
| -- **Determine First Order:** |
161 |
| - - Group by `customer_id` to find the minimum `order_date` as the first order. |
162 |
| - - Merge with the original DataFrame to obtain details of the first order. |
163 |
| -- **Calculate Percentage:** |
164 |
| - - Count how many first orders are immediate (where `order_date` equals `customer_pref_delivery_date`). |
165 |
| - - Compute the percentage and round to 2 decimal places. |
166 |
| - |
167 |
| ---- |
168 |
| - |
169 |
| -## **File Structure** |
170 |
| -``` |
171 |
| -LeetCode1174/ |
172 |
| -├── problem_statement.md # Contains the problem description and constraints. |
173 |
| -├── sql_standard_solution.sql # Contains the Standard MySQL solution. |
174 |
| -├── sql_window_solution.sql # Contains the Window Function solution. |
175 |
| -├── pandas_solution.py # Contains the Pandas solution. |
176 |
| -├── README.md # Overview of the problem and available solutions. |
177 |
| -``` |
178 |
| - |
179 |
| ---- |
180 |
| - |
181 |
| -## **Useful Links** |
182 |
| -- [LeetCode Problem 1174](https://leetcode.com/problems/immediate-food-delivery-ii/) |
183 |
| -- [SQL GROUP BY Documentation](https://www.w3schools.com/sql/sql_groupby.asp) |
184 |
| -- [SQL Window Functions](https://www.w3schools.com/sql/sql_window.asp) |
185 |
| -- [Pandas GroupBy Documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html) |
186 |
| -- [Pandas Merge Documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html) |
0 commit comments