An open source Python library for the scraping of Federal Reserve data.
By default, all modules within FedTools use 10 threads to increase scraping speed. By default, the Output is a Pandas DataFrame, indexed by release date of the materials. Additional serialised storage methods are optional.
From Python:
pip install FedTools
from FedTools import MonetaryPolicyCommittee
from FedTools import BeigeBooks
from FedTools import FederalReserveMins
Returns a Pandas DataFrame 'dataset', which contains all Meeting Minutes, indexed by Date and a '.pkl' file saved within "DIRECTORY":
pip install FedTools
from FedTools import MonetaryPolicyCommittee
dataset = MonetaryPolicyCommittee().find_statements()
MonetaryPolicyCommittee().pickle_data("DIRECTORY")
Returns a Pandas DataFrame 'dataset', which contains all Beige Books, indexed by Date and a '.pkl' file saved within "DIRECTORY":
pip install FedTools
from FedTools import BeigeBooks
dataset = BeigeBooks().find_beige_books()
BeigeBooks().pickle_data("DIRECTORY")
Returns a Pandas DataFrame 'dataset', which contains all Federal Reserve Minutes since 1993, indexed by Date and a '.pkl' file saved within "DIRECTORY":
pip install FedTools
from FedTools import FederalReserveMins
dataset = FederalReserveMins().find_minutes()
FederalReserveMins().pickle_data("DIRECTORY")
monetary_policy = MonetaryPolicyCommittee(
main_url = 'https://www.federalreserve.gov',
calendar_url = 'https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm',
historical_split = 2014,
verbose = True,
thread_num = 10)
dataset = monetary_policy.find_statements()
# serialise, save to "DIRECTORY":
monetary_policy.pickle_data("DIRECTORY")
-------------------------------------------------------------------------------------------------------------------
beige_books = BeigeBooks(
main_url = 'https://www.federalreserve.gov',
beige_book_url='https://www.federalreserve.gov/monetarypolicy/beige-book-default.htm',
historical_split = 2019,
verbose = True,
thread_num = 10)
dataset = beige_books.find_beige_books()
# serialise, save to "DIRECTORY":
beige_books.pickle_data("DIRECTORY")
-------------------------------------------------------------------------------------------------------------------
fed_mins = FederalReserveMins(
main_url = 'https://www.federalreserve.gov',
calendar_url ='https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm',
historical_split = 2014,
verbose = True,
thread_num = 10)
dataset = fed_mins.find_minutes()
# serialise, save to "DIRECTORY":
fed_mins.pickle_data("DIRECTORY")
All parameters above are optional, with a short explanation of each parameter outlined below:
Argument | Description |
---|---|
main_url | Federal Reserve Open Monetary Policy (FOMC) website URL. (str) |
calendar_url | URL containing a list of FOMC Meeting dates and Minutes release dates. (str) |
beige_book_url | URL containing a list of Beige Book release dates. (str) |
historical_split | first year considered as historical (Check Here for FOMC and Minutes or Check Here for Beige Books). (int) |
verbose | boolean determining printing during scraping. (bool) |
thread_num | the number of threads to use for web scraping. (int) |