Skip to content

DrJZhou/Deep-Learning-for-Aspect-Level-Sentiment-Classification-Baselines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep-Learning-for-Aspect-Level-Sentiment-Classification-Baselines

The public state-of-the-art methods for deep learning based ASC. This is part of my survey paper "Deep learning for Aspect-level Sentiment Classification: Survey, Vision and Challenges".

Note

Click here to download all the ASC datasets (including SemEval 2014, SemEval 2015, SemEval 2016, Twitter, Sentihood, MPQA, Michell and manually-annoted-Hotel).

Authors

  • Jie Zhou (jzhou@ica.stc.sh.cn), Jimmy Huang (jhuang@yorku.ca), Qin Chen, Tingting Wang, Qinmin Vivian Hu, and Liang He

  • If you find this repo useful, please consider citing (no obligation at all):

@article{zhou2019deep,
  title={Deep learning for aspect-level sentiment classification: Survey, vision, and challenges},
  author={Zhou, Jie and Huang, Jimmy Xiangji and Chen, Qin and Hu, Qinmin Vivian and Wang, Tingting and He, Liang},
  journal={IEEE Access},
  volume={7},
  pages={78454--78483},
  year={2019},
  publisher={IEEE}
}

Environmental Requirement

  • Python 3.6
  • Pytorch 0.4.0
  • sklearn
  • numpy

Introduction of this work

models/: The deep learning model for ASC

  • ContextAvg: the average of the word embeddings is fed to a softmax layer for sentiment prediction, which was adopted as a baseline in [1].
  • AEContextAvg: the concatenation of the average of the word embeddings and the average of the aspect vectors is fed to a softmax layer for sentiment prediction, which was adopted as a baseline in [1].
  • LSTM: the last hidden vector obtained by LSTM [2] is used for sentence representation and sentiment prediction.
  • GRU: the last hidden vector obtained by GRU [3] is used for sentence representation and sentiment prediction.
  • BiLSTM: the concatenation of last hidden vectors obtained by BiLSTM is used for sentence representation and sentiment prediction.
  • BiGRU: the concatenation of last hidden vectors obtained by BiGRU is used for sentence representation and sentiment prediction.
  • TD-LSTM: a target-dependent LSTM model which modeled the preceding and following contexts surrounding the target for sentiment classification [4].
  • TC-LSTM: this model extends TD-LSTM by incorporating an target con- nection component, which explicitly utilizes the connections between target word and each context word when composing the representation of a sentence. [4].
  • AT-LSTM: it uses an LSTM to model the sentence and a basic attention mechanism is applied for sentence representation and sentiment prediction. [5].
  • AT-GRU: it uses a GRU to model the sentence and a basic attention mechanism is applied for sentence representation and sentiment prediction. [5].
  • AT-BiLSTM: it uses a BiLSTM to model the sentence and a basic attention mechanism is applied for sentence representation and sentiment prediction. [5].
  • AT-BiGRU: it uses a BiGRU to model the sentence and a basic attention mechanism is applied for sentence representation and sentiment prediction. [5].
  • ATAE-LSTM: the aspect representation is integrated into attention-based LSTM for sentence representation and sentiment prediction [5].
  • ATAE-GRU: the aspect representation is integrated into attention-based GRU for sentence representation and sentiment prediction.
  • ATAE-BiLSTM: the aspect representation is integrated into attention-based BiLSTM for sentence representation and sentiment prediction.
  • ATAE-BiGRU: the aspect representation is integrated into attention-based BiGRU for sentence representation and sentiment prediction.
  • IAN: the attentions in the context and aspect were learned interactively for context and aspect representation [6].
  • LCRS: it contains three LSTMs, i.e., left-, center- and right- LSTM, respectively modeling the three parts of a review (left context, aspect and right context) [7].
  • CNN: The sentence representation obtained by CNN [8] is used for ASC.
  • GCAE: it has two separate convolutional layers on the top of the embedding layer, whose outputs are combined by gating units [9].
  • MemNet: the content and position of the aspect is incorporated into a deep memory network [10].
  • RAM: a multi-layer architecture where each layer contains an attention-based aggregation of word features and a GRU cell to learn the sentence representation [11].
  • CABASC: two novel attention mechanisms, namely sentence-level content attention mechanism and context attention mechanism are introduced in a memory network to tackle the semantic-mismatch problem [12].

data/: Store the data

  • data_orign: the original datasets, including SemEval2014-Task4, SemEval2015-Task12, SemEval2016-Task5, Twitter, Sentihood, Michell, MPQA.
  • data_processed: the datasets after processing
  • store: Store the embedding of words, like GloVe.
  • tmp: store the temporary files.

data_processing/: Processing the data

  • SemEval2014-Laptop: Processe the Laptop14 dataset.
  • SemEval2014-Resturant: Process the Restaurants14 dataset.
  • SemEval2015-Resturant: Process the Restaurants15 dataset.
  • SemEval2016-Resturant: Process the Restaurants16 dataset.
  • Twitter: Process the Twitter dataset.
  • MPQA: Process the MPQA dataset.
  • Michell-en: Process the Michell-en dataset.
  • Sentihood: Process the Sentihood dataset.

layers/: Basic units of deep learning models

  • Attention: Attention units, including ''Contact Attention", ''General Attention" and ''Dot-Product Attention".
  • Dynamic_RNN: Basic RNN, LSTM and GRU models.
  • SqueezeEmbedding: Squeeze the embeddings of words.

results/: Store the results

  • log: Store the log of the models.
  • ans: Store the answer of the models
  • attention_weight: Store the weight of the attentions.
  • model: Store the trained models.

Statics of the performance of the existing works for deep learning based ASC

Method Restaurants14 Laptop14 Restaurants15 Restaurants16 Twitter
Accuracy Marco-F1 Accuracy Marco-F1 Accuracy Marco-F1 Accuracy Marco-F1 Accuracy Marco-F1
RecNN for ASC
AdaRNN - - - - - - - - 66.30 65.90
PhraseRNN 66.20 - - - - - - - - -
RNN for ASC
GRNN - - - - - - - - - -
TD-LSTM - - - - - - - - 70.80 69.00
TC-LSTM - - - - - - - - 71.50 69.50
AE-LSTM 76.60 - 68.90 - - - - - - -
H-LSTM - - - - - - - - - -
Attention-based RNN for ASC
ATAE-LSTM 77.20 - 68.70 - - - - - - -
AB-LSTM - - - - - - - - 72.60 72.20
BILSTM-ATT-G - - - - - - - - 73.60 72.10
IAN 78.60 - 72.10 - - - - - - -
AF-LSTM(CONV) 75.44 - 68.81 - - - - - - -
HEAT - - - - - - - - - -
Sentic LSTM+TA+SA - - - - - - - - - -
PRET+MULT 79.11 79.73 71.15 67.46 81.30 68.74 85.58 79.76 - -
PBAN 81.16 - 74.12 - - - - - - -
LSTM+SynATT+TarRep 80.63 71.32 71.94 69.23 81.67 66.05 84.61 67.45 - -
MGAN 81.25 71.94 75.39 72.47 - - - - 72.54 70.81
Inter-Aspect Dependencies 79.00 - 72.50 - - - - - - -
AOA-LSTM 81.20 - 74.50 - - - - - - -
LCR-Rot 81.34 - 75.24 - - - - - 72.69 -
Word&Clause-Level ATT - - - - 80.90 68.50 - - - -
CNN for ASC
GCAE 77.28 - 69.14 - - - - - - -
PF-CNN 79.20 - 70.06 - - - - - - -
Conv-Memnet 78.26 68.38 76.37 72.10 - - - - 72.11 70.80
TNet 80.69 71.27 76.54 71.75 - - - - 74.97 73.60
Memory Network for ASC
MemNet 80.95 - 72.21 - - - - - - -
DyMemNN - 58.82 - 60.11 - - - - - -
RAM 80.23 70.80 74.49 71.35 - - - - 69.36 73.85
CEA 80.98 - 72.88 - - - - - - -
DAuM 82.32 71.45 74.45 70.16 - - - - 72.14 60.24
IARM 80.00 - 73.8 - - - - - - -
TMNs - 68.84 - 67.23 - - - - - -
Cabasc 80.89 - 75.07 - - - - - 71.53 -

The results of our implemented models

The results of dataset Restaurants14

Accuracy Macro Micro Precision Recall F1
Precision Recall F1 Precision Recall F1 Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.
ContextAvg 73.48 62.92 58.44 59.58 73.48 73.48 73.48 56.48 51.79 80.49 55.61 29.59 90.11 56.04 37.66 85.03
AEContextAvg 75.27 66.30 61.47 63.10 75.27 75.27 75.27 62.09 55.47 81.36 57.65 36.22 90.52 59.79 43.83 85.70
LSTM 77.23 67.54 64.34 65.51 77.23 77.23 77.23 63.35 54.55 84.73 61.73 39.80 91.48 62.53 46.02 87.98
GRU 78.75 70.51 65.61 67.11 78.75 78.75 78.75 67.36 59.84 84.35 66.33 37.24 93.27 66.84 45.91 88.58
BiGRU 77.14 67.61 63.55 65.15 77.14 77.14 77.14 64.94 53.69 84.19 57.65 40.82 92.17 61.08 46.38 88.00
BiLSTM 78.30 69.11 66.01 67.12 78.30 78.30 78.30 65.13 56.64 85.55 64.80 41.33 91.90 64.96 47.79 88.61
TD-LSTM 78.66 70.84 67.56 68.98 78.66 78.66 78.66 72.88 54.55 85.09 65.82 45.92 90.93 69.17 49.86 87.92
TC-LSTM 77.41 69.06 65.18 66.72 77.41 77.41 77.41 67.78 55.70 83.69 62.24 42.35 90.93 64.89 48.12 87.16
AT-LSTM 78.04 70.84 61.52 63.37 78.04 78.04 78.04 70.06 61.25 81.23 63.27 25.00 96.29 66.49 35.51 88.12
AT-GRU 78.30 70.74 64.76 66.58 78.30 78.30 78.30 67.91 61.21 83.11 64.80 36.22 93.27 66.32 45.51 87.90
AT-BiGRU 77.77 69.51 64.74 66.18 77.77 77.77 77.77 65.13 59.84 83.56 64.80 37.24 92.17 64.96 45.91 87.66
AT-BiLSTM 78.84 72.84 63.67 65.66 78.84 78.84 78.84 68.45 67.82 82.27 65.31 30.10 95.60 66.84 41.70 88.44
ATAE-GRU 76.79 68.68 63.49 65.32 76.79 76.79 76.79 69.49 54.62 81.92 62.76 36.22 91.48 65.95 43.56 86.44
ATAE-LSTM 76.79 67.93 62.74 63.72 76.79 76.79 76.79 64.53 57.00 82.25 66.84 29.08 92.31 65.66 38.51 86.99
ATAE-BiGRU 76.34 65.95 63.26 63.82 76.34 76.34 76.34 63.77 50.41 83.67 67.35 31.63 90.80 65.51 38.87 87.09
ATAE-BiLSTM 75.98 67.01 61.71 63.43 75.98 75.98 75.98 66.29 53.28 81.46 60.20 33.16 91.76 63.10 40.88 86.30
IAN 76.70 68.29 63.69 65.12 76.70 76.70 76.70 64.25 58.06 82.57 63.27 36.73 91.07 63.75 45.00 86.61
LCRS 76.25 68.71 60.85 63.03 76.25 76.25 76.25 69.82 56.44 79.88 60.20 29.08 93.27 64.66 38.38 86.06
CNN 75.18 68.45 58.44 60.25 75.18 75.18 75.18 60.44 65.79 79.12 56.12 25.51 93.68 58.20 36.76 85.79
GCAE 77.41 68.58 64.80 65.06 77.41 77.41 77.41 64.86 57.43 83.44 73.47 29.59 91.35 68.90 39.06 87.21
MemNet 73.39 62.74 61.13 61.09 73.39 73.39 73.39 52.56 52.38 83.29 62.76 33.67 86.95 57.21 40.99 85.08
RAM 77.41 68.38 65.67 66.76 77.41 77.41 77.41 67.20 53.25 84.68 64.80 41.84 90.38 65.97 46.86 87.44
CABASC 77.68 69.01 67.18 68.02 77.68 77.68 77.68 65.59 55.68 85.75 62.24 50.00 89.29 63.87 52.69 87.48

The results of Laptop14

Accuracy Macro Micro Precision Recall F1
Precision Recall F1 Precision Recall F1 Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.
ContextAvg 66.93 63.47 59.98 58.19 66.93 66.93 66.93 46.41 67.65 76.35 65.62 27.22 87.10 54.37 38.82 81.37
AEContextAvg 66.46 61.64 59.56 58.04 66.46 66.46 66.46 47.40 61.54 75.97 64.06 28.40 86.22 54.49 38.87 80.77
LSTM 66.14 62.37 60.20 55.35 66.14 66.14 66.14 48.08 62.79 76.23 78.12 15.98 86.51 59.52 25.47 81.04
GRU 67.71 64.31 61.50 58.60 67.71 67.71 67.71 49.47 66.67 76.80 73.44 23.67 87.39 59.12 34.93 81.76
BiGRU 69.44 65.61 63.83 61.49 69.44 69.44 69.44 49.22 67.11 80.49 74.22 30.18 87.10 59.19 41.63 83.66
BiLSTM 68.81 63.41 63.56 62.09 68.81 68.81 68.81 50.28 59.05 80.90 69.53 36.69 84.46 58.36 45.26 82.64
TD-LSTM 68.50 62.66 62.98 61.87 68.50 68.50 68.50 47.70 57.63 82.66 64.84 40.24 83.87 54.97 47.39 83.26
TC-LSTM 67.08 62.02 62.66 61.11 67.08 67.08 67.08 46.52 57.76 81.79 67.97 39.64 80.35 55.24 47.02 81.07
AT-LSTM 69.44 64.23 65.02 63.16 69.44 69.44 69.44 51.91 58.88 81.90 74.22 37.28 83.58 61.09 45.65 82.73
AT-GRU 70.85 66.57 66.21 63.58 70.85 70.85 70.85 54.21 64.63 80.87 80.47 31.36 86.80 64.78 42.23 83.73
AT-BiGRU 69.28 64.44 64.36 63.28 69.28 69.28 69.28 48.86 62.61 81.84 67.19 42.60 83.28 56.58 50.70 82.56
AT-BiLSTM 71.94 66.36 66.80 66.42 71.94 71.94 71.94 55.48 59.06 84.55 63.28 52.07 85.04 59.12 55.35 84.80
ATAE-GRU 69.75 64.43 63.46 62.45 69.75 69.75 69.75 52.76 61.22 79.31 67.19 35.50 87.68 59.11 44.94 83.29
ATAE-LSTM 67.40 65.16 62.18 58.47 67.40 67.40 67.40 47.39 69.64 78.44 78.12 23.08 85.34 59.00 34.67 81.74
ATAE-BiGRU 70.38 67.00 66.20 64.12 70.38 70.38 70.38 49.25 68.82 82.95 76.56 37.87 84.16 59.94 48.85 83.55
ATAE-BiLSTM 70.53 66.84 65.99 63.43 70.53 70.53 70.53 50.75 67.47 82.30 78.91 33.14 85.92 61.77 44.44 84.07
IAN 68.50 64.11 62.69 60.90 68.50 68.50 68.50 51.12 63.41 77.78 71.09 30.77 86.22 59.48 41.43 81.78
LCRS 66.46 63.15 60.84 59.50 66.46 66.46 66.46 46.70 66.67 76.08 66.41 33.14 82.99 54.84 44.27 79.38
CNN 66.93 65.95 59.91 57.75 66.93 66.93 66.93 45.99 76.36 75.51 67.19 24.85 87.68 54.60 37.50 81.14
GCAE 65.83 60.95 60.34 59.20 65.83 65.83 65.83 43.72 60.00 79.14 62.50 37.28 81.23 51.45 45.99 80.17
MemNet 64.42 59.08 59.36 58.01 64.42 64.42 64.42 43.01 54.87 79.35 62.50 36.69 78.89 50.96 43.97 79.12
RAM 67.55 62.25 60.78 59.73 67.55 67.55 67.55 49.09 60.44 77.23 63.28 32.54 86.51 55.29 42.31 81.60
CABASC 70.06 66.14 63.05 62.94 70.06 70.06 70.06 50.98 69.79 77.63 60.94 39.64 88.56 55.52 50.57 82.74

The results of Restaurants15

Accuracy Macro Micro Precision Recall F1
Precision Recall F1 Precision Recall F1 Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.
ContextAvg 72.31 65.35 50.18 49.80 72.31 72.31 72.31 74.91 50.00 71.15 58.67 2.22 89.65 65.80 4.26 79.34
AEContextAvg 73.37 49.87 50.22 49.17 73.37 73.37 73.37 78.54 0.00 71.06 59.25 0.00 91.41 67.55 0.00 79.96
LSTM 77.99 51.77 54.60 53.14 77.99 77.99 77.99 75.49 0.00 79.84 78.32 0.00 85.46 76.88 0.00 82.55
GRU 76.80 51.87 53.01 51.96 76.80 76.80 76.80 80.97 0.00 74.64 67.63 0.00 91.41 73.70 0.00 82.18
BiGRU 77.28 51.48 53.70 52.44 77.28 77.28 77.28 76.99 0.00 77.46 72.54 0.00 88.55 74.70 0.00 82.63
BiLSTM 78.34 52.34 54.36 53.14 78.34 78.34 78.34 79.18 0.00 77.84 72.54 0.00 90.53 75.72 0.00 83.71
TD-LSTM 77.28 64.53 57.65 59.04 77.28 77.28 77.28 78.06 37.50 78.04 71.97 13.33 87.67 74.89 19.67 82.57
TC-LSTM 74.44 62.62 53.41 54.10 74.44 74.44 74.44 76.51 37.50 73.84 65.90 6.67 87.67 70.81 11.32 80.16
AT-LSTM 80.00 53.32 55.82 54.48 80.00 80.00 80.00 79.88 0.00 80.08 78.03 0.00 89.43 78.95 0.00 84.50
AT-GRU 79.41 52.87 55.48 54.11 79.41 79.41 79.41 78.78 0.00 79.84 78.32 0.00 88.11 78.55 0.00 83.77
AT-BiGRU 77.99 61.04 54.64 54.30 77.99 77.99 77.99 81.88 25.00 76.24 70.52 2.22 91.19 75.78 4.08 83.05
AT-BiLSTM 79.88 53.11 55.88 54.45 79.88 79.88 79.88 78.41 0.00 80.93 79.77 0.00 87.89 79.08 0.00 84.27
ATAE-GRU 78.58 85.80 55.40 54.88 78.58 78.58 78.58 79.33 100.00 78.06 75.43 2.22 88.55 77.33 4.35 82.97
ATAE-LSTM 79.53 53.15 55.34 54.09 79.53 79.53 79.53 80.62 0.00 78.85 75.72 0.00 90.31 78.09 0.00 84.19
ATAE-BiGRU 78.70 69.08 56.30 56.29 78.70 78.70 78.70 77.46 50.00 79.80 77.46 4.44 87.00 77.46 8.16 83.25
ATAE-BiLSTM 78.34 52.21 54.59 53.29 78.34 78.34 78.34 78.14 0.00 78.47 75.43 0.00 88.33 76.76 0.00 83.11
IAN 79.41 86.18 56.74 56.82 79.41 79.41 79.41 78.82 100.00 79.72 77.46 4.44 88.33 78.13 8.51 83.80
LCRS 75.50 59.03 53.63 53.73 75.50 75.50 75.50 76.28 25.00 75.81 68.79 4.44 87.67 72.34 7.55 81.31
CNN 69.35 64.71 47.47 46.93 69.35 69.35 69.35 77.46 50.00 66.67 47.69 2.22 92.51 59.03 4.26 77.49
GCAE 76.33 57.61 53.89 53.32 76.33 76.33 76.33 75.07 20.00 77.76 73.99 2.22 85.46 74.53 4.00 81.43
MemNet 76.45 71.93 56.34 57.97 76.45 76.45 76.45 76.90 62.50 76.39 70.23 11.11 87.67 73.41 18.87 81.64
RAM 76.21 51.23 52.71 51.62 76.21 76.21 76.21 79.00 0.00 74.68 68.50 0.00 89.65 73.37 0.00 81.48
CABASC 76.21 61.73 56.28 57.30 76.21 76.21 76.21 76.47 31.25 77.47 71.39 11.11 86.34 73.84 16.39 81.67

The results of Restaurants16

Accuracy Macro Micro Precision Recall F1
Precision Recall F1 Precision Recall F1 Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.
ContextAvg 80.56 49.61 52.56 51.04 80.56 80.56 80.56 61.82 0.00 87.01 66.67 0.00 91.00 64.15 0.00 88.96
AEContextAvg 80.79 49.87 52.99 51.37 80.79 80.79 80.79 62.33 0.00 87.26 68.14 0.00 90.83 65.11 0.00 89.01
LSTM 83.12 76.89 59.24 58.23 83.12 83.12 83.12 64.23 75.00 91.43 81.86 6.82 89.03 71.98 12.50 90.22
GRU 83.47 69.29 60.53 61.34 83.47 83.47 83.47 67.81 50.00 90.07 77.45 13.64 90.51 72.31 21.43 90.29
BiGRU 83.47 77.36 59.66 61.39 83.47 83.47 83.47 68.18 75.00 88.91 73.53 13.64 91.82 70.75 23.08 90.34
BiLSTM 82.54 52.03 53.70 52.81 82.54 82.54 82.54 69.70 0.00 86.38 67.65 0.00 93.45 68.66 0.00 89.78
TD-LSTM 84.17 52.67 57.08 54.70 84.17 84.17 84.17 67.22 0.00 90.78 79.41 0.00 91.82 72.81 0.00 91.29
TC-LSTM 82.07 55.80 54.73 54.06 82.07 82.07 82.07 66.82 12.50 88.07 70.10 2.27 91.82 68.42 3.85 89.90
AT-LSTM 82.77 51.85 55.44 53.56 82.77 82.77 82.77 67.11 0.00 88.43 75.00 0.00 91.33 70.83 0.00 89.86
AT-GRU 83.82 52.68 56.04 54.30 83.82 83.82 83.82 69.06 0.00 88.99 75.49 0.00 92.64 72.13 0.00 90.78
AT-BiGRU 83.47 77.57 57.55 58.06 83.47 83.47 83.47 69.44 75.00 88.26 73.53 6.82 92.31 71.43 12.50 90.24
AT-BiLSTM 82.89 85.01 58.75 56.88 82.89 82.89 82.89 63.20 100.00 91.84 83.33 4.55 88.38 71.88 8.70 90.08
ATAE-GRU 82.31 51.16 55.11 53.01 82.31 82.31 82.31 64.41 0.00 89.09 74.51 0.00 90.83 69.09 0.00 89.95
ATAE-LSTM 82.19 51.70 53.10 52.33 82.19 82.19 82.19 69.07 0.00 86.02 65.69 0.00 93.62 67.34 0.00 89.66
ATAE-BiGRU 82.54 84.85 57.17 56.33 82.54 82.54 82.54 65.42 100.00 89.14 76.96 4.55 90.02 70.72 8.70 89.58
ATAE-BiLSTM 83.35 78.88 58.85 59.36 83.35 83.35 83.35 67.24 80.00 89.39 76.47 9.09 91.00 71.56 16.33 90.19
IAN 82.19 73.57 57.66 56.30 82.19 82.19 82.19 64.17 66.67 89.87 79.90 4.55 88.54 71.18 8.51 89.20
LCRS 81.61 68.60 57.16 59.36 81.61 81.61 81.61 70.31 50.00 85.50 66.18 13.64 91.65 68.18 21.43 88.47
CNN 81.84 73.19 55.21 55.14 81.84 81.84 81.84 65.44 66.67 87.48 69.61 4.55 91.49 67.46 8.51 89.44
GCAE 79.98 49.95 50.00 49.74 79.98 79.98 79.98 66.47 0.00 83.38 56.37 0.00 93.62 61.01 0.00 88.20
MemNet 81.26 67.07 55.25 57.94 81.26 81.26 81.26 70.41 46.15 84.64 58.33 13.64 93.78 63.81 21.05 88.98
RAM 83.47 52.61 55.12 53.83 83.47 83.47 83.47 70.00 0.00 87.83 72.06 0.00 93.29 71.01 0.00 90.48
CABASC 83.12 52.33 54.63 53.44 83.12 83.12 83.12 69.57 0.00 87.42 70.59 0.00 93.29 70.07 0.00 90.26

The results of Twitter

Accuracy Macro Micro Precision Recall F1
Precision Recall F1 Precision Recall F1 Neg. Neu. Pos. Neg. Neu. Pos. Neg. Neu. Pos.
ContextAvg 68.35 68.69 64.26 65.82 68.35 68.35 68.35 70.15 67.88 68.03 54.34 80.64 57.80 61.24 73.71 62.50
AEContextAvg 69.94 69.57 66.57 67.75 69.94 69.94 69.94 67.11 70.66 70.95 58.96 80.06 60.69 62.77 75.07 65.42
LSTM 69.22 69.64 65.13 66.52 69.22 69.22 69.22 66.46 69.12 73.33 63.01 81.50 50.87 64.69 74.80 60.07
GRU 68.79 67.37 68.11 67.71 68.79 68.79 68.79 64.32 73.80 64.00 68.79 70.81 64.74 66.48 72.27 64.37
BiGRU 67.20 67.63 62.14 63.68 67.20 67.20 67.20 67.11 66.74 69.03 58.96 82.37 45.09 62.77 73.74 54.55
BiLSTM 68.21 67.75 64.84 65.98 68.21 68.21 68.21 69.18 69.13 64.94 58.38 78.32 57.80 63.32 73.44 61.16
TD-LSTM 71.82 72.21 68.11 68.67 71.82 71.82 71.82 65.15 73.59 77.88 74.57 82.95 46.82 69.54 77.99 58.48
TC-LSTM 72.69 72.76 69.65 70.90 72.69 72.69 72.69 74.00 72.56 71.71 64.16 81.79 63.01 68.73 76.90 67.08
AT-LSTM 70.95 69.94 69.17 69.52 70.95 70.95 70.95 69.01 73.54 67.28 68.21 76.30 63.01 68.60 74.89 65.07
AT-GRU 70.66 71.21 66.47 67.97 70.66 70.66 70.66 70.00 70.07 73.55 64.74 83.24 51.45 67.27 76.09 60.54
AT-BiGRU 71.97 75.33 67.73 69.62 71.97 71.97 71.97 89.00 69.93 67.05 51.45 84.68 67.05 65.20 76.60 67.05
AT-BiLSTM 69.80 68.93 67.73 68.14 69.80 69.80 69.80 70.55 72.65 63.59 59.54 76.01 67.63 64.58 74.29 65.55
ATAE-GRU 69.94 70.11 65.51 67.11 69.94 69.94 69.94 68.97 69.73 71.64 57.80 83.24 55.49 62.89 75.89 62.54
ATAE-LSTM 68.64 68.86 65.22 66.60 68.64 68.64 68.64 69.54 68.25 68.79 60.69 78.90 56.07 64.81 73.19 61.78
ATAE-BiGRU 70.23 71.31 66.28 68.07 70.23 70.23 70.23 72.99 68.60 72.34 57.80 82.08 58.96 64.52 74.74 64.97
ATAE-BiLSTM 70.95 72.77 66.38 68.38 70.95 70.95 70.95 80.34 69.10 68.87 54.34 84.68 60.12 64.83 76.10 64.20
IAN 71.82 73.00 67.15 69.11 71.82 71.82 71.82 76.52 70.21 72.26 58.38 85.84 57.23 66.23 77.24 63.87
LCRS 68.06 67.63 64.93 65.96 68.06 68.06 68.06 70.00 69.25 63.64 56.65 77.46 60.69 62.62 73.12 62.13
CNN 67.77 66.41 64.26 65.02 67.77 67.77 67.77 66.67 70.94 61.63 53.18 78.32 61.27 59.16 74.45 61.45
GCAE 72.11 72.12 70.04 70.85 72.11 72.11 72.11 75.69 72.65 68.00 63.01 78.32 68.79 68.77 75.38 68.39
MemNet 69.65 69.09 66.76 67.68 69.65 69.65 69.65 71.17 70.57 65.52 67.05 78.32 54.91 69.05 74.25 59.75
RAM 70.09 71.32 64.93 66.48 70.09 70.09 70.09 70.62 68.84 74.51 65.32 85.55 43.93 67.87 76.29 55.27
CABASC 68.64 69.74 64.64 66.44 68.64 68.64 68.64 75.00 67.07 67.14 58.96 80.64 54.34 66.02 73.23 60.06

References

[1] Tang D, Qin B, Liu T. Aspect Level Sentiment Classification with Deep Memory Network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016: 214-224.
[2] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[3] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
[4] Tang D, Qin B, Feng X, et al. Effective LSTMs for Target-Dependent Sentiment Classification[C]//Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 2016: 3298-3307.
[5] Wang Y, Huang M, Zhao L. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 conference on empirical methods in natural language processing. 2016: 606-615.
[6] Ma D, Li S, Zhang X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. AAAI Press, 2017: 4068-4074.
[7] Zheng S, Xia R. Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention[J]. arXiv preprint arXiv:1802.00892, 2018.
[8] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The handbook of brain theory and neural networks, 1995, 3361(10): 1995.
[9] Xue W, Li T. Aspect Based Sentiment Analysis with Gated Convolutional Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018: 2514-2523.
[10] Tang D, Qin B, Liu T. Aspect Level Sentiment Classification with Deep Memory Network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016: 214-224.
[11] Chen P, Sun Z, Bing L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 conference on empirical methods in natural language processing. 2017: 452-461.
[12] Liu Q, Zhang H, Zeng Y, et al. Content attention model for aspect based sentiment analysis[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2018: 1023-1032.

Contacts

Node

Thanks for code shared by Song, Youwei, we conduct our model based on it.

About

The public state-of-the-art methods for deep learning based ASC

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published