Skip to content

Commit 12028ec

Browse files
committed
1 parent 82b228e commit 12028ec

File tree

1 file changed

+52
-0
lines changed

1 file changed

+52
-0
lines changed

CS330/Exercise-1.tex

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -153,4 +153,56 @@ \section*{№ 8}
153153
\end{enumerate}
154154
\end{multicols}
155155

156+
\begin{multicols}{2}
157+
\raggedcolumns
158+
159+
\section*{№ 14}
160+
\begin{align*}
161+
& \mathsf{ (¬p \wedge (p \rightarrow q)) \rightarrow ¬q} \\
162+
\equiv\; & \mathsf{¬(¬p \wedge (p \rightarrow q)) \vee ¬q} \\
163+
\equiv\; & \mathsf{(p \vee ¬(p \rightarrow q)) \vee ¬q} \\
164+
\equiv\; & \mathsf{(p \vee (p \wedge ¬q)) \vee ¬q} \\
165+
\equiv\; & \mathsf{p \vee ¬q} \equiv \bm{\mathsf{q \rightarrow p}} \\
166+
\end{align*}
167+
168+
\noindent This cannot be reduced to $\bm{\mathsf{T}}$; so this is not a tautology.
169+
170+
\section*{№ 22}
171+
\begin{align*}
172+
& \mathsf{( p \rightarrow q) \wedge (p \rightarrow r)} \\
173+
\equiv\; & \mathsf{(¬p \vee q) \wedge (¬p \vee r)} \\
174+
\equiv\; & \mathsf{ ¬p \vee (q \wedge r) \equiv p \rightarrow (q \wedge r)} \\
175+
\end{align*}
176+
177+
\pagebreak[2]
178+
\section*{№ 24}
179+
\begin{align*}
180+
& \mathsf{( p \rightarrow q) \vee (p \rightarrow r)} \\
181+
\equiv\; & \mathsf{(¬p \vee q) \vee (¬p \vee r)} \\
182+
\equiv\; & \mathsf{ ¬p \vee (q \vee r) \equiv p \rightarrow (q \vee r)} \\
183+
\end{align*}
184+
185+
\end{multicols}
186+
187+
\pagebreak[2]
188+
\section*{\kern-0.5bp\textsuperscript{s} 42–44} % This pluralization is fugly.
189+
190+
Disjunctive normal form exists as a formalization of the concept of the ‘truth table’ itself: each
191+
disjunction ‘section’ of the final form is a \textit{conjunction of} the propositional variables
192+
whose values were \textsf{true} going into a particular row of the table whose truth-value was also
193+
\textsf{true}, and the negation of the corresponding \textsf{false} variables from that row.
194+
195+
Meanwhile, because you \textit{can} write down any truth-table in disjunctive-normal form,
196+
\textit{and} any compound proposition can be represented by a truth-table, it follows that any
197+
compound proposition can be represented in that form.
198+
199+
Finally, since a disjunction can be represented by a conjunction of negations (by De Morgan's Law),
200+
you can further reduce disjunctive-normal form to a series of only conjunctions and negations of the
201+
form:
202+
203+
\begin{align*}
204+
& \mathsf{¬(a \wedge b \wedge ¬c \wedge d) \wedge ¬(a \wedge ¬b \wedge ¬c \wedge ¬d)} \\
205+
\wedge\; & \mathsf{¬(¬a \wedge b \wedge c \wedge d) \wedge ¬(¬a \wedge b \wedge ¬c \wedge ¬d)} \\
206+
\end{align*}
207+
156208
\end{document}

0 commit comments

Comments
 (0)