@@ -153,4 +153,56 @@ \section*{№ 8}
153
153
\end {enumerate }
154
154
\end {multicols }
155
155
156
+ \begin {multicols }{2}
157
+ \raggedcolumns
158
+
159
+ \section* {№ 14 }
160
+ \begin {align* }
161
+ & \mathsf { (¬p \wedge (p \rightarrow q)) \rightarrow ¬q} \\
162
+ \equiv \; & \mathsf {¬(¬p \wedge (p \rightarrow q)) \vee ¬q} \\
163
+ \equiv \; & \mathsf {(p \vee ¬(p \rightarrow q)) \vee ¬q} \\
164
+ \equiv \; & \mathsf {(p \vee (p \wedge ¬q)) \vee ¬q} \\
165
+ \equiv \; & \mathsf {p \vee ¬q} \equiv \bm {\mathsf {q \rightarrow p}} \\
166
+ \end {align* }
167
+
168
+ \noindent This cannot be reduced to $ \bm {\mathsf {T}}$ ; so this is not a tautology.
169
+
170
+ \section* {№ 22 }
171
+ \begin {align* }
172
+ & \mathsf {( p \rightarrow q) \wedge (p \rightarrow r)} \\
173
+ \equiv \; & \mathsf {(¬p \vee q) \wedge (¬p \vee r)} \\
174
+ \equiv \; & \mathsf { ¬p \vee (q \wedge r) \equiv p \rightarrow (q \wedge r)} \\
175
+ \end {align* }
176
+
177
+ \pagebreak [2]
178
+ \section* {№ 24 }
179
+ \begin {align* }
180
+ & \mathsf {( p \rightarrow q) \vee (p \rightarrow r)} \\
181
+ \equiv \; & \mathsf {(¬p \vee q) \vee (¬p \vee r)} \\
182
+ \equiv \; & \mathsf { ¬p \vee (q \vee r) \equiv p \rightarrow (q \vee r)} \\
183
+ \end {align* }
184
+
185
+ \end {multicols }
186
+
187
+ \pagebreak [2]
188
+ \section* {№\kern -0.5bp\textsuperscript {s} 42–44 } % This pluralization is fugly.
189
+
190
+ Disjunctive normal form exists as a formalization of the concept of the ‘truth table’ itself: each
191
+ disjunction ‘section’ of the final form is a \textit {conjunction of } the propositional variables
192
+ whose values were \textsf {true} going into a particular row of the table whose truth-value was also
193
+ \textsf {true}, and the negation of the corresponding \textsf {false} variables from that row.
194
+
195
+ Meanwhile, because you \textit {can } write down any truth-table in disjunctive-normal form,
196
+ \textit {and } any compound proposition can be represented by a truth-table, it follows that any
197
+ compound proposition can be represented in that form.
198
+
199
+ Finally, since a disjunction can be represented by a conjunction of negations (by De Morgan's Law),
200
+ you can further reduce disjunctive-normal form to a series of only conjunctions and negations of the
201
+ form:
202
+
203
+ \begin {align* }
204
+ & \mathsf {¬(a \wedge b \wedge ¬c \wedge d) \wedge ¬(a \wedge ¬b \wedge ¬c \wedge ¬d)} \\
205
+ \wedge \; & \mathsf {¬(¬a \wedge b \wedge c \wedge d) \wedge ¬(¬a \wedge b \wedge ¬c \wedge ¬d)} \\
206
+ \end {align* }
207
+
156
208
\end {document }
0 commit comments