-
Notifications
You must be signed in to change notification settings - Fork 96
EMcuboMK
This utility program can be used to sample cubochoric space and determine the MacKenzie misorientation distribution for an arbitrary crystallographic symmetry. The program samples cubochoric space in concentric cubes that correspond to spheres in Rodrigues space; the ratio of the number of sampling points that fall inside the Rodrigues fundamental zone to the total number of points on the sampling cube is an estimate for the solid angle subtended by the fundamental zone at that particular misorientation value. This solid angle function is then multiplied by the standard misorientation distribution function in the absence of crystal symmetry.
The program prompts the user for the point group number and the number of sampling points to be used along the cubochoric semi-edge. This then generates an array of misorientations between 0 and pi. The output of the program is a csv file with the misorientation angle, the sampled MacKenzie distribution function, and the analytical values for the distribution, based on [A. Morawiec, J.Appl.Cryst. (1995) 28:289-293]. The user can then take the output file and produce any desired plot using Excel, Matlab or any other program that can read .csv files and display them.
The example below uses point group symmetry 27 (hexagonal) and 100 points along the semi-edge of the cubochoric cube. The .csv file starts as follows (misorientation angle in degrees):
angle, sampled, theoretical
150, 150, 150
0.00000000, 0.00000000, 0.00000000
1.01656236, 0.00000350, 0.00000350
2.03315673, 0.00001399, 0.00001399
3.04981510, 0.00003147, 0.00003147
4.06656952, 0.00005595, 0.00005595
5.08345204, 0.00008741, 0.00008741
6.10049473, 0.00012584, 0.00012584
7.11772975, 0.00017125, 0.00017125
8.13518926, 0.00022362, 0.00022362
9.15290552, 0.00028295, 0.00028295
10.17091083, 0.00034921, 0.00034921
11.18923760, 0.00042241, 0.00042241
12.20791830, 0.00050252, 0.00050252
13.22698551, 0.00058953, 0.00058953
14.24647191, 0.00068342, 0.00068342
15.26641029, 0.00078418, 0.00078418
16.28683359, 0.00089178, 0.00089178
17.30777484, 0.00100621, 0.00100621
...
and the plot looks like this (solid line = theory, + symbols = determined by cubochoric sampling).
Wiki pages are maintained by M. De Graef; they are part of the EMsoft package and fall under the same copyright (BSD2).
Information for Users
SEM Modalities
- Monte Carlo Simulations- EBSD Master Pattern Simulations
- EBSD Overlap Master Patterns
- EBSD Pattern Simulations
- EBSD Dictionary Indexing
- EBSD Spherical Indexing
- EBSD Reflector Ranking
- EBSD HREBSD
- ECP Master Pattern Simulations
- ECP Pattern Simulations
- TKD Master Pattern Simulations
- TKD Pattern Simulations
- ECCI Defect Image Simulations
TEM Modalities
- HH4- PED
- CBED Pattern Simulations
- STEM-DCI Image Simulations
- EMIntegrateSTEM utility
Utility Programs
- EMConvertOrientations- EMDisorientations
- EMHOLZ
- EMKikuchiMap
- EMOpenCLinfo
- EMZAgeom
- EMcuboMK
- EMdpextract
- EMdpmerge
- EMdrawcell
- EMeqvPS
- EMeqvrot
- EMfamily
- EMGBO
- EMGBOdm
- EMgetEulers
- EMgetOSM
- EMlatgeom
- EMlistSG
- EMlistTC
- EMmkxtal
- EMorbit
- EMorient
- EMqg
- EMsampleRFZ
- EMshowxtal
- EMsoftSlackTest
- EMsoftinit
- EMstar
- EMstereo
- EMxtalExtract
- EMxtalinfo
- EMzap
Complete Examples
- Crystal Data Entry Example
- EBSD Example
- ECP Example
- TKD Example
- ECCI Example
- CBED Example
- Dictionary Indexing Example
- DItutorial
Information for Developers