Skip to content

EMeqvrot

Marc DeGraef edited this page Jan 19, 2022 · 1 revision

Program: EMeqvrot

This program can be used to list all the rotations that are equivalent to a given rotation for a given rotational point group symmetry. The program also identifies which of the equivalent rotations lies inside the fundamental zone, and lists all 8 representations for that rotation.

This is a command line program that will ask for the point group number, the type of input representation (Rodrigues, axis-angle, quaternion, or Euler), the type of output representation, and an input rotation. For cubic symmetry, input in axis-angle, output in quaternions, and axis-angle pair 30°@[1,0,0], the output is:

Enter the point group number 32
 Input representation: Rodrigues (1), axis-angle (2), quaternion (3), or Euler (4) 2
 Output representation: Rodrigues (1), axis-angle (2), quaternion (3), or Euler (4) 3
 Axis-angle pair (nx, ny, nz, omega°) : 1.0,0.0,0.0,30.0

FZ  0.96592582628906831       0.25881904510252074        0.0000000000000000        0.0000000000000000     
 -0.25881904510252074       0.96592582628906831        0.0000000000000000        0.0000000000000000     
   0.0000000000000000        0.0000000000000000       0.96592582628906831      -0.25881904510252074     
   0.0000000000000000        0.0000000000000000       0.25881904510252074       0.96592582628906831     
  0.50000000000000011       0.86602540378443871        0.0000000000000000        0.0000000000000000     
  0.68301270189221941       0.18301270189221933       0.68301270189221941      -0.18301270189221933     
  0.68301270189221941       0.18301270189221933       0.18301270189221933       0.68301270189221941     
  0.86602540378443871      -0.50000000000000011        0.0000000000000000        0.0000000000000000     
  0.68301270189221941       0.18301270189221933      -0.68301270189221941       0.18301270189221933     
  0.68301270189221941       0.18301270189221933      -0.18301270189221933      -0.68301270189221941     
 -0.18301270189221933       0.68301270189221941       0.68301270189221941      -0.18301270189221933     
  0.18301270189221933      -0.68301270189221941       0.68301270189221941      -0.18301270189221933     
   0.0000000000000000        0.0000000000000000       0.86602540378443871       0.50000000000000011     
   0.0000000000000000        0.0000000000000000      -0.50000000000000011       0.86602540378443871     
 -0.18301270189221933       0.68301270189221941       0.18301270189221933       0.68301270189221941     
  0.18301270189221933      -0.68301270189221941       0.18301270189221933       0.68301270189221941     
  0.35355339059327379       0.61237243569579447       0.61237243569579447       0.35355339059327379     
  0.61237243569579447      -0.35355339059327379      -0.61237243569579447      -0.35355339059327379     
  0.35355339059327379       0.61237243569579447      -0.35355339059327379       0.61237243569579447     
  0.61237243569579447      -0.35355339059327379       0.35355339059327379      -0.61237243569579447     
  0.61237243569579447      -0.35355339059327379       0.61237243569579447       0.35355339059327379     
  0.35355339059327379       0.61237243569579447      -0.61237243569579447      -0.35355339059327379     
  0.61237243569579447      -0.35355339059327379      -0.35355339059327379       0.61237243569579447     
  0.35355339059327379       0.61237243569579447       0.35355339059327379      -0.61237243569579447     

Equivalent representations for the rotation inside the FZ:
Euler angles                     : 180.0000000   30.0000000  180.0000000 
Axis angle pair [n; angle]       :   1.0000000    0.0000000    0.0000000 ;   30.0000000
Rodrigues vector                 :       0.2679492        0.0000000        0.0000000 
Homochoric representation        :   0.2606055    0.0000000    0.0000000 
Cubochoric representation        :   0.2100470    0.0000000    0.0000000 
Quaternion                       :   0.9659258    0.2588190    0.0000000    0.0000000 
Stereographic                       :  0.1317   0.0000   0.0000 
                                   /  1.0000   0.0000   0.0000 \
Orientation Matrix               : |  0.0000   0.8660  -0.5000 |
                                   \  0.0000   0.5000   0.8660 /

 ---> Another one ? (1/0) 0

The output line with FZ at the start represents the rotation inside the fundamental zone.

Information for Users

Home

SEM Modalities     - Monte Carlo Simulations
    - EBSD Master Pattern Simulations
    - EBSD Depth Master Pattern Simulations
    - TKD Master Pattern Simulations
    - ECP Master Pattern Simulations
    - Overlap Master Patterns
    - EBSD Pattern Simulations
    - ECP Pattern Simulations
    - TKD Pattern Simulations
    - Dictionary Indexing
    - EBSD Spherical Indexing
    - EBSD Reflector Ranking
    - Ion-induced Secondary Electron Master Pattern
    - ECCI Defect Image Simulations
    - 4DEBSD
TEM Modalities     - HH4
    - PED
    - CBED Pattern Simulations
    - STEM-DCI Image Simulations
    - EMIntegrateSTEM utility
XRD Modalities     - Laue Master Pattern Simulation
    - EMLaue
    - EMLaueSlit
General Parameter Definitions * Foil Defect Configuration Definitions
EMsoftWorkbench
Utility Programs     - EMConvertOrientations
    - EMDisorientations
    - EMHOLZ
    - EMKikuchiMap
    - EMOpenCLinfo
    - EMZAgeom
    - EMcuboMK
    - EMdpextract
    - EMdpmerge
    - EMdrawcell
    - EMeqvPS
    - EMeqvrot
    - EMfamily
    - EMGBO
    - EMGBOdm
    - EMgetEulers
    - EMgetOSM
    - EMlatgeom
    - EMlistSG
    - EMlistTC
    - EMmkxtal
    - EMorbit
    - EMorav
    - EMorient
    - EMqg
    - EMsampleRFZ
    - EMshowxtal
    - EMsoftSlackTest
    - EMsoftinit
    - EMstar
    - EMstereo
    - EMxtalExtract
    - EMxtalinfo
    - EMzap
IDL Scripts     - Virtual Machine Apps
    - SEMDisplay
    - Efit
    - CBEDDisplay
python wrappers     - python examples

Complete Examples

  1. Crystal Data Entry Example
  2. EBSD Example
  3. ECP Example
  4. TKD Example
  5. ECCI Example
  6. CBED Example
  7. Dictionary Indexing Example
  8. DItutorial

Information for Developers

Clone this wiki locally