Repository contains inference example and accuracy validation of quantized transformer TensorRT models. All onnx models are published on Hugging Face 🤗:
Our example notebooks automatically download the appropriate onnx and build engine.
TensorRT INT8+FP32 | torch FP16 | |
---|---|---|
Lambada Acc | 72.11% | 71.43% |
Model size (GB) | 2.0 | 3.2 |
TensorRT INT8+FP32 | torch FP16 | torch FP32 | |
---|---|---|---|
Lambada Acc | 78.46% | 79.53% | - |
Model size (GB) | 8.5 | 12.1 | 24.2 |
- GPU RTX 4090
- CPU 11th Gen Intel(R) Core(TM) i7-11700K
- TensorRT 8.5.3.1
- pytorch 1.13.1+cu116
Input sequance length | Number of generated tokens | TensorRT INT8+FP32 ms | torch FP16 ms | Acceleration |
---|---|---|---|---|
64 | 64 | 462 | 1190 | 2.58 |
64 | 128 | 920 | 2360 | 2.54 |
64 | 256 | 1890 | 4710 | 2.54 |
Input sequance length | Number of generated tokens | TensorRT INT8+FP32 ms | torch FP16 ms | Acceleration |
---|---|---|---|---|
64 | 64 | 1040 | 1610 | 1.55 |
64 | 128 | 2089 | 3224 | 1.54 |
64 | 256 | 4236 | 6479 | 1.53 |
- GPU RTX 4090
- CPU 11th Gen Intel(R) Core(TM) i7-11700K
- TensorRT 8.5.3.1
- pytorch 1.13.1+cu116