-
Run from repo
git clone https://github.com/Echoliu27/skidsteer_interpret.git
cd skidsteer_interpret
make install
streamlit run app.py
├── data
│ ├── brand_influence.csv
│ ├── feature_importance.csv
│ ├── final_tabular2.csv ## standardized and log transformed data (except winning_bid)
│ ├── final_unscaled.csv ## unscaled data
│ ├── mturk_96.csv ## mturk data
├── image
│ ├── rf_image
│ │ ├── bigiron_AC6813.jpg ## original image
│ │ ├── ...
│ └── most_least_colorfulness.PNG ## demo image for a button
├── results
│ ├── images
│ │ ├── 118_cam.png ## cam image (118 corresponds to the index/row number in results_val.csv)
│ │ ├── 118_gn.png ## guided saliency image
│ │ ├── ...
│ ├── file_list.csv
│ ├── results_train.csv ## training set for nn
│ └── results_val.csv ## validation set for nn
├── app.py
├── requirements.txt
├── Makefile
├── README.md
├── Procfile
├── setup.sh
└── .gitignore
- Use dataset (joined with MTURK annotation) with sample size 96 as train and test set
- Prediction accuracy is not as good as neural network due to small sample size
- Local interpretaion shows how each feature collectively influence the prediction outcome using Shapely value.
- Attention:This is only a demo with no actual model loaded since model is too large to be uploaded onto Github. We stored the images ouput by the model in a folder named results/images and directly fetch pictures to render interpretations.