Skip to content

Echoliu27/skidsteer_interpret

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

skidsteer_interpret

How to run this demo

git clone https://github.com/Echoliu27/skidsteer_interpret.git
cd skidsteer_interpret
make install
streamlit run app.py

File Structure

├── data
│   ├── brand_influence.csv
│   ├── feature_importance.csv
│   ├── final_tabular2.csv            ## standardized and log transformed data (except winning_bid)
│   ├── final_unscaled.csv            ## unscaled data
│   ├── mturk_96.csv                  ## mturk data
├── image
│   ├── rf_image
│   │   ├── bigiron_AC6813.jpg        ## original image
│   │   ├── ...
│   └── most_least_colorfulness.PNG   ## demo image for a button
├── results
│   ├── images
│   │   ├── 118_cam.png               ## cam image (118 corresponds to the index/row number in results_val.csv)
│   │   ├── 118_gn.png                ## guided saliency image
│   │   ├── ...
│   ├── file_list.csv                 
│   ├── results_train.csv             ## training set for nn
│   └── results_val.csv               ## validation set for nn
├── app.py
├── requirements.txt
├── Makefile
├── README.md
├── Procfile
├── setup.sh
└── .gitignore

Model 1: Random Forest

  • Use dataset (joined with MTURK annotation) with sample size 96 as train and test set
  • Prediction accuracy is not as good as neural network due to small sample size
  • Local interpretaion shows how each feature collectively influence the prediction outcome using Shapely value.

Model 2: Pre-trained Neural Net

  • Attention:This is only a demo with no actual model loaded since model is too large to be uploaded onto Github. We stored the images ouput by the model in a folder named results/images and directly fetch pictures to render interpretations.

About

Dockerized skid steer price prediction interpretation app

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published