Skip to content

Active Learning for efficient deep learning (Estimating Loss)

Notifications You must be signed in to change notification settings

Effithon-Project/Active_Learning

Repository files navigation

jungyeon working directory

BEFORE running the code, you have to download Kitti dataset! And then, change the dataset directory in main.py. Download

Setting Virtual Environment with Anaconda

conda create -n [VIR_ENV_NAME] python==3.8

conda activate [VIR_ENV_NAME]

pip install -r requirements.txt

python main.py

If you can run main.py, the setting is done.

Active Learning for EFFICIENT Learning

Goals: random sampling VS. confidence VS. LL4AL

  1. SSD(ResNet50) + Kitti(Object detection) + Confidence

  2. SSD(ResNet50) + Kitti(Object detection) + Learning loss

    • Learning loss code Github
    • SSD(ResNet50) Github
    • Wandb Github
    • Kitti parameter Github
    • maybe later : PyTorch 1.5.0 이상 버전에서 model weight update와 관련된 inplace operation이 수정되면서 zero_grad -> backward -> step의 과정이 최적화하고자 하는 변수의 순서에 맞춰서 수행되어야 해결되는 것으로 알고 있습니다.


Reference

SSD

  1. [논문] SSD: Single Shot Multibox Detector 분석
  2. 갈아먹는 Object Detection [6] SSD
  3. mAP 계산하기
  4. Object Detection
  5. Object-Detection-Object-Detection-튜토리얼
  6. Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)
  7. Deep Learning for Generic Object Detection: A Survey
  8. a-PyTorch-Tutorial-to-Object-Detection
  9. nvidia_deeplearningexamples_ssd

AL

  1. Learning Loss for Active Learning : base
  2. Learning to Rank for Active Learning: A Listwise Approach

KITTI

  1. kitti vis code : random_vis.py 코드
  2. kitti label : 라벨링 정보
  3. kitti dataloader pytorch : dataset.py

ETC

if time permits

+RL

+SSL

About

Active Learning for efficient deep learning (Estimating Loss)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages