This repository contains the Python implementation of the Chi-Square function designed to numerically validate the 4-zeroes texture model. This function utilizes four parameters:
To use the Chi-Square function, you need to have Python installed on your machine (the code was tested on Python 3.11). In order to use or test this function, you will need the following packages:
numpy
cmath
The Chi-Square function is defined as follows:
def Chi_Square(Au, Ad, phi1, phi2):
'''
Calculate the Chi-Square statistic for the 4-zeroes texture model.
Parameters:
- Au: Free parameter Au
- Ad: Free parameter Ad
- phi1: Free parameter phi1
- phi2: Free parameter phi2
Returns:
- chi_square: Calculated Chi-Square criterion
'''
For the case study I, where
$m_{c}< A_{u}< m_{t}$ $m_{s}< A_{d}< m_{b}$ $0<\phi_{1}<2\pi$ $0<\phi_{2}<2\pi$
The experimental values for
To use the Chi-Square function, simply call it with the required parameters. Here's a basic example:
criterion = Chi_Square(139297.25173570923,2393.291447697453,1.6830151602082093,6.1851624875199525)
print(criterion)
#output
0.7904494037073188
This project is licensed under the GPL-3.0 License.