forked from GPflow/GPflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svgp.py
175 lines (151 loc) · 7.32 KB
/
svgp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2016 James Hensman, Valentine Svensson, alexggmatthews, Mark van der Wilk
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import tensorflow as tf
from .. import kullback_leiblers, features
from .. import settings
from .. import transforms
from ..conditionals import conditional, Kuu
from ..decors import params_as_tensors
from ..models.model import GPModel
from ..params import DataHolder
from ..params import Minibatch
from ..params import Parameter
class SVGP(GPModel):
"""
This is the Sparse Variational GP (SVGP). The key reference is
::
@inproceedings{hensman2014scalable,
title={Scalable Variational Gaussian Process Classification},
author={Hensman, James and Matthews,
Alexander G. de G. and Ghahramani, Zoubin},
booktitle={Proceedings of AISTATS},
year={2015}
}
"""
def __init__(self, X, Y, kern, likelihood, feat=None,
mean_function=None,
num_latent=None,
q_diag=False,
whiten=True,
minibatch_size=None,
Z=None,
num_data=None,
q_mu=None,
q_sqrt=None,
**kwargs):
"""
- X is a data matrix, size N x D
- Y is a data matrix, size N x P
- kern, likelihood, mean_function are appropriate GPflow objects
- Z is a matrix of pseudo inputs, size M x D
- num_latent is the number of latent process to use, default to
Y.shape[1]
- q_diag is a boolean. If True, the covariance is approximated by a
diagonal matrix.
- whiten is a boolean. If True, we use the whitened representation of
the inducing points.
- minibatch_size, if not None, turns on mini-batching with that size.
- num_data is the total number of observations, default to X.shape[0]
(relevant when feeding in external minibatches)
"""
# sort out the X, Y into MiniBatch objects if required.
if minibatch_size is None:
X = DataHolder(X)
Y = DataHolder(Y)
else:
X = Minibatch(X, batch_size=minibatch_size, seed=0)
Y = Minibatch(Y, batch_size=minibatch_size, seed=0)
# init the super class, accept args
GPModel.__init__(self, X, Y, kern, likelihood, mean_function, num_latent, **kwargs)
self.num_data = num_data or X.shape[0]
self.q_diag, self.whiten = q_diag, whiten
self.feature = features.inducingpoint_wrapper(feat, Z)
# init variational parameters
num_inducing = len(self.feature)
self._init_variational_parameters(num_inducing, q_mu, q_sqrt, q_diag)
def _init_variational_parameters(self, num_inducing, q_mu, q_sqrt, q_diag):
"""
Constructs the mean and cholesky of the covariance of the variational Gaussian posterior.
If a user passes values for `q_mu` and `q_sqrt` the routine checks if they have consistent
and correct shapes. If a user does not specify any values for `q_mu` and `q_sqrt`, the routine
initializes them, their shape depends on `num_inducing` and `q_diag`.
Note: most often the comments refer to the number of observations (=output dimensions) with P,
number of latent GPs with L, and number of inducing points M. Typically P equals L,
but when certain multioutput kernels are used, this can change.
Parameters
----------
:param num_inducing: int
Number of inducing variables, typically refered to as M.
:param q_mu: np.array or None
Mean of the variational Gaussian posterior. If None the function will initialise
the mean with zeros. If not None, the shape of `q_mu` is checked.
:param q_sqrt: np.array or None
Cholesky of the covariance of the variational Gaussian posterior.
If None the function will initialise `q_sqrt` with identity matrix.
If not None, the shape of `q_sqrt` is checked, depending on `q_diag`.
:param q_diag: bool
Used to check if `q_mu` and `q_sqrt` have the correct shape or to
construct them with the correct shape. If `q_diag` is true,
`q_sqrt` is two dimensional and only holds the square root of the
covariance diagonal elements. If False, `q_sqrt` is three dimensional.
"""
q_mu = np.zeros((num_inducing, self.num_latent)) if q_mu is None else q_mu
self.q_mu = Parameter(q_mu, dtype=settings.float_type) # M x P
if q_sqrt is None:
if self.q_diag:
self.q_sqrt = Parameter(np.ones((num_inducing, self.num_latent), dtype=settings.float_type),
transform=transforms.positive) # M x P
else:
q_sqrt = np.array([np.eye(num_inducing, dtype=settings.float_type) for _ in range(self.num_latent)])
self.q_sqrt = Parameter(
q_sqrt, transform=transforms.LowerTriangular(num_inducing, self.num_latent)) # P x M x M
else:
if q_diag:
assert q_sqrt.ndim == 2
self.num_latent = q_sqrt.shape[1]
self.q_sqrt = Parameter(q_sqrt, transform=transforms.positive) # M x L/P
else:
assert q_sqrt.ndim == 3
self.num_latent = q_sqrt.shape[0]
num_inducing = q_sqrt.shape[1]
self.q_sqrt = Parameter(
q_sqrt, transform=transforms.LowerTriangular(num_inducing, self.num_latent)) # L/P x M x M
@params_as_tensors
def build_prior_KL(self):
if self.whiten:
K = None
else:
K = Kuu(self.feature, self.kern, jitter=settings.numerics.jitter_level) # (P x) x M x M
return kullback_leiblers.gauss_kl(self.q_mu, self.q_sqrt, K)
@params_as_tensors
def _build_likelihood(self):
"""
This gives a variational bound on the model likelihood.
"""
# Get prior KL.
KL = self.build_prior_KL()
# Get conditionals
fmean, fvar = self._build_predict(self.X, full_cov=False, full_output_cov=False)
# Get variational expectations.
var_exp = self.likelihood.variational_expectations(fmean, fvar, self.Y)
# re-scale for minibatch size
scale = tf.cast(self.num_data, settings.float_type) / tf.cast(tf.shape(self.X)[0], settings.float_type)
likelihood = tf.reduce_sum(var_exp) * scale - KL
return likelihood
@params_as_tensors
def _build_predict(self, Xnew, full_cov=False, full_output_cov=False):
mu, var = conditional(Xnew, self.feature, self.kern, self.q_mu, q_sqrt=self.q_sqrt, full_cov=full_cov,
white=self.whiten, full_output_cov=full_output_cov)
return mu + self.mean_function(Xnew), var