Code for paper 'RMDL: Recalibrated Multi-instance Deep Learning for Whole Slide Gastric Image Classification' accepted by MedIA 2019.
This implement is based on GPU (with a minimum memory of 4~5 GB).
This is a Keras (2.2.1) implementation of RMDL-inference with backend of Tensorflow (1.10.1). The code was tested with Anaconda and Python (2.7.15).
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
After installing the dependency:
pip install pyyaml
pip install pytz
pip install tensorboardX==1.4 matplotlib pillow
pip install tqdm
conda install scipy==1.1.0
conda install -c conda-forge opencv
-
Clone the repo:
git clone https://github.com/EmmaW8/RMDL.git cd RMDL
-
Install dependencies:
Annoconda environment installation and activation:
conda create -n tf27 pip python=2.7 source activate tf27
Tensorflow installation:
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.10.1-cp27-none-linux_x86_64.whl
Keras installation:
pip install keras==2.2.1
Install dependencies:
conda install -c conda-forge opencv pip install openslide-python pip install numpy==1.14.5 pip install tqdm pip install matplotlib pip install scikit-image pip install git+https://www.github.com/keras-team/keras-contrib.git
-
Configure your dataset path in configure.yaml with parameter 'data_dir_list'. Download the images and network weights from google drive. you can copy your images (end with '.svs') to the data folder. You can also change the gpu number in gpu_list and define a larger or smaller batch size according to your GPU memory size.
-
Run.
If you want to run for your self using the provided images, remove the folder Outputs first.sh run.sh
The results will be generated in the Outputs folder.
@article{wang2019rmdl, title={RMDL: Recalibrated Multi-instance Deep Learning for Whole Slide Gastric Image Classification}, author={Wang, Shujun and Zhu, Yaxi and Yu, Lequan and Chen, Hao and Lin, Huangjing and Wan, Xiangbo and Fan, Xinjuan and Heng, Pheng-Ann}, journal={Medical Image Analysis}, pages={101549}, year={2019}, publisher={Elsevier} }