This is a PyTorch implementation for the conference paper:
Yizhe Zhu, Jianwen Xie , Bingchen Liu, Ahmed Elgammal "Learning Feature-to-Feature Translator by Alternating Back-Propagation for Zero-Shot Learning", ICCV, 2019
- Python 3
- pytorch 1.0
Results evaluated on GBU setting
Download the data and uncompress it to the folder 'data/'.
To train the model, run the following command. CUB datset:
python train_ABP.py --dataset CUB --z_dim 10 --sigma 0.3 --langevin_s 0.1 --langevin_step 5 --batchsize 64 --nSample 300
AWA1 datset:
python train_ABP.py --dataset AWA1 --z_dim 10 --sigma 0.3 --langevin_s 0.1 --langevin_step 5 --batchsize 64 --nSample 1500
AWA2 datset:
python train_ABP.py --dataset AWA2 --z_dim 10 --sigma 0.3 --langevin_s 0.1 --langevin_step 5 --batchsize 64 --nSample 1500
SUN datset:
python train_ABP.py --dataset SUN --z_dim 10 --sigma 0.3 --langevin_s 0.1 --langevin_step 5 --batchsize 64 --nSample 300
If you use this code in your research, please consider citing:
@InProceedings{zhu2019learning,
title={Learning Feature-to-Feature Translator by Alternating Back-Propagation for Generative Zero-Shot Learning},
author={Zhu, Yizhe and Xie, Jianwen and Liu, Bingchen and Elgammal, Ahmed},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2019}
}