Skip to content

Expander/PolyLog.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PolyLog.jl

test coverage

The PolyLog.jl package provides Julia implementations of real and complex polylogarithms, including the real and complex dilogarithm and trilogarithm.

Example

using PolyLog

# real polylogarithms for real arguments
reli1(1.0)          # Re[Li_1(x)]
reli2(1.0)          # Re[Li_2(x)] (dilogarithm)
reli3(1.0)          # Re[Li_3(x)] (trilogarithm)
reli4(1.0)          # Re[Li_4(x)]
reli(10, 1.0)       # Re[Li_n(x)] for all integers n (here: n = 10)
reli(10, big"1.0")  # Re[Li_n(x)] for all integers n (here: n = 10)
reli(-2, 1.0)       # Re[Li_n(x)] for all integers n (here: n = -2)

# complex polylogarithms for real or complex arguments
li0(1.0 + 1.0im)       # Li_0(z)
li1(1.0 + 1.0im)       # Li_1(z)
li2(1.0 + 1.0im)       # Li_2(z) (dilogarithm)
li3(1.0 + 1.0im)       # Li_3(z) (trilogarithm)
li4(1.0 + 1.0im)       # Li_4(z)
li5(1.0 + 1.0im)       # Li_5(z)
li6(1.0 + 1.0im)       # Li_6(z)
li(10, 1.0 + 1.0im)    # Li_n(z) for all integers n (here: n = 10)
li(10, big"1.0" + 1im) # Li_n(z) for all integers n (here: n = 10)
li(-2, 1.0 + 1.0im)    # Li_n(z) for all integers n (here: n = -2)

Example using ForwardDiff

using ForwardDiff, PolyLog

ForwardDiff.derivative(reli1, 0.5)                 # Re[Li_1]'(x)
ForwardDiff.derivative(reli2, 0.5)                 # Re[Li_2]'(x)
ForwardDiff.derivative(reli3, 0.5)                 # Re[Li_3]'(x)
ForwardDiff.derivative(reli4, 0.5)                 # Re[Li_4]'(x)
ForwardDiff.derivative(x -> reli(10, x), 0.5)      # Re[Li_n]'(x) for n = 10
ForwardDiff.derivative(x -> reli(10, x), big"0.5") # Re[Li_n]'(x) for n = 10
ForwardDiff.derivative(x -> reli(-2, x), 0.5)      # Re[Li_n]'(x) for n = -2

Documentation

https://docs.juliahub.com/PolyLog/

Notes

The implementation of the real dilogarithm is an adaptation of [arXiv:2201.01678].

The implementation of the complex dilogarithm has been inspired by the implementation in SPheno and has been translated to Julia.

The implementation of the real trilogarithm is an adaptation of [arXiv:2308.11619].

The implementation of the general n-th order polylogarithm is an adaptation of [arXiv:2010.09860].

Contributors

Copying

PolyLog.jl is licenced under the MIT License.

Links

Refer to the package Polylogarithms.jl for a Julia implementation of polylogarithms of arbitrary complex order.