This project realizes the anomaly detection and root cause location of multimodal data. The anomaly detection part adopts MTAD-GAT model (metric, trace) and DeepLog model (log), The root cause localization part adopts the Squeeze model.
- Train:
- Train data (update model): 2022-03-24 15:20:00 ~ 2022-03-25 08:06:00
- Valid data (prevent overfitting): 2022-03-25 08:07:00 ~ 2022-03-25 15:19:00
- Test:
- Valid data (search threshold): 2022-03-26 08:30:00 ~ 2022-03-26 11:29:00
- Test data (evaluation model): 2022-03-26 11:30:00 ~ 2022-03-26 20:29:00
P | R | F1 | ||
---|---|---|---|---|
metric | - | 0.5329 | 0.7945 | 0.6379 |
metric | + | 0.8873 | 0.7412 | 0.8077 |
trace | - | 0.1943 | 0.3527 | 0.2506 |
trace | + | 0.2073 | 0.8706 | 0.3348 |
log | - | 0.1382 | 0.4027 | 0.2058 |
log | + | 0.1759 | 1.0000 | 0.2992 |
metric+trace | - | 0.3190 | 0.6218 | 0.4217 |
metric+trace | + | 0.7917 | 0.8941 | 0.8398 |
metric+trace+log | - | 0.3347 | 0.6359 | 0.4386 |
metric+trace+log | + | 0.8085 | 0.8941 | 0.8492 |
PR@1 | PR@2 | PR@3 | PR@4 | PR@5 | PR@Avg | ||
---|---|---|---|---|---|---|---|
RootCause | - | 0.2783 | 0.4001 | 0.5192 | 0.5953 | 0.6217 | 0.4829 |
RootCause | + | 0.5739 | 0.7652 | 0.8522 | 0.9217 | 0.9391 | 0.8104 |