Skip to content

Code implementation of my undergraduate graduation project AIOps.

Notifications You must be signed in to change notification settings

ForestsKing/AIOps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This project realizes the anomaly detection and root cause location of multimodal data. The anomaly detection part adopts MTAD-GAT model (metric, trace) and DeepLog model (log), The root cause localization part adopts the Squeeze model.

Experimental setup

  • Train:
    • Train data (update model): 2022-03-24 15:20:00 ~ 2022-03-25 08:06:00
    • Valid data (prevent overfitting): 2022-03-25 08:07:00 ~ 2022-03-25 15:19:00
  • Test:
    • Valid data (search threshold): 2022-03-26 08:30:00 ~ 2022-03-26 11:29:00
    • Test data (evaluation model): 2022-03-26 11:30:00 ~ 2022-03-26 20:29:00

Result

anomaly detection

P R F1
metric - 0.5329 0.7945 0.6379
metric + 0.8873 0.7412 0.8077
trace - 0.1943 0.3527 0.2506
trace + 0.2073 0.8706 0.3348
log - 0.1382 0.4027 0.2058
log + 0.1759 1.0000 0.2992
metric+trace - 0.3190 0.6218 0.4217
metric+trace + 0.7917 0.8941 0.8398
metric+trace+log - 0.3347 0.6359 0.4386
metric+trace+log + 0.8085 0.8941 0.8492

root cause localization

PR@1 PR@2 PR@3 PR@4 PR@5 PR@Avg
RootCause - 0.2783 0.4001 0.5192 0.5953 0.6217 0.4829
RootCause + 0.5739 0.7652 0.8522 0.9217 0.9391 0.8104

More

  • See Log for training and testing logs.
  • See Loss for loss visualization.

About

Code implementation of my undergraduate graduation project AIOps.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages