-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathbarotropicqg.jl
472 lines (369 loc) · 14.3 KB
/
barotropicqg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
module BarotropicQG
export
Problem,
set_zeta!,
updatevars!,
energy,
enstrophy,
meanenergy,
meanenstrophy,
dissipation,
work,
drag,
drag_ens,
work_ens,
dissipation_ens
using
CUDA,
Reexport
@reexport using FourierFlows
using FFTW: rfft
using LinearAlgebra: mul!, ldiv!
using FourierFlows: getfieldspecs, parsevalsum, parsevalsum2
nothingfunction(args...) = nothing
"""
Problem(; parameters...)
Construct a BarotropicQG turbulence problem.
"""
function Problem(dev::Device=CPU();
# Numerical parameters
nx = 256,
Lx = 2π,
ny = nx,
Ly = Lx,
dt = 0.01,
# Physical parameters
β = 0.0,
eta = nothing,
# Drag and/or hyper-/hypo-viscosity
ν = 0.0,
nν = 1,
μ = 0.0,
# Timestepper and equation options
stepper = "RK4",
calcFU = nothingfunction,
calcFq = nothingfunction,
stochastic = false,
T = Float64)
# the grid
grid = TwoDGrid(dev, nx, Lx, ny, Ly; T=T)
x, y = gridpoints(grid)
# topographic PV
eta === nothing && ( eta = zeros(dev, T, (nx, ny)) )
params = !(typeof(eta)<:ArrayType(dev)) ? Params(grid, β, eta, μ, ν, nν, calcFU, calcFq) : Params(β, eta, rfft(eta), μ, ν, nν, calcFU, calcFq)
vars = (calcFq == nothingfunction && calcFU == nothingfunction) ? Vars(dev, grid) : (stochastic ? StochasticForcedVars(dev, grid) : ForcedVars(dev, grid))
equation = Equation(params, grid)
return FourierFlows.Problem(equation, stepper, dt, grid, vars, params, dev)
end
# ----------
# Parameters
# ----------
"""
Params(g::TwoDGrid, β, FU, eta, μ, ν, nν, calcFU, calcFq)
Returns the params for an unforced two-dimensional barotropic QG problem.
"""
struct Params{T, Aphys, Atrans} <: AbstractParams
β :: T # Planetary vorticity y-gradient
eta :: Aphys # Topographic PV
etah :: Atrans # FFT of Topographic PV
μ :: T # Linear drag
ν :: T # Viscosity coefficient
nν :: Int # Hyperviscous order (nν=1 is plain old viscosity)
calcFU :: Function # Function that calculates the forcing F(t) on
# domain-averaged zonal flow U(t)
calcFq! :: Function # Function that calculates the forcing on QGPV q
end
"""
Params(g::TwoDGrid, β, eta::Function, μ, ν, nν, calcFU, calcFq)
Constructor for Params that accepts a generating function for the topographic PV.
"""
function Params(grid::AbstractGrid{T, A}, β, eta::Function, μ, ν, nν::Int, calcFU, calcFq) where {T, A}
etagrid = A([eta(grid.x[i], grid.y[j]) for i=1:grid.nx, j=1:grid.ny])
etah = rfft(etagrid)
return Params(β, etagrid, etah, μ, ν, nν, calcFU, calcFq)
end
# ---------
# Equations
# ---------
"""
Equation(params, grid)
Returns the equation for two-dimensional barotropic QG problem with `params` and `grid`.
"""
function Equation(params::Params, grid::AbstractGrid)
L = @. - params.μ - params.ν * grid.Krsq^params.nν + im * params.β * grid.kr * grid.invKrsq
CUDA.@allowscalar L[1, 1] = 0
return FourierFlows.Equation(L, calcN!, grid)
end
# ----
# Vars
# ----
abstract type BarotropicQGVars <: AbstractVars end
struct Vars{Ascalar, Aphys, Atrans, F, P} <: BarotropicQGVars
U :: Ascalar
q :: Aphys
zeta :: Aphys
psi :: Aphys
u :: Aphys
v :: Aphys
qh :: Atrans
zetah :: Atrans
psih :: Atrans
uh :: Atrans
vh :: Atrans
Fqh :: F
prevsol :: P
end
const ForcedVars = Vars{<:AbstractArray, <:AbstractArray, <:AbstractArray, <:AbstractArray, Nothing}
const StochasticForcedVars = Vars{<:AbstractArray, <:AbstractArray, <:AbstractArray, <:AbstractArray, <:AbstractArray}
"""
Vars(dev, grid)
Returns the vars for unforced two-dimensional barotropic QG problem on device `dev` and with `grid`
"""
function Vars(dev::Dev, grid::AbstractGrid) where Dev
T = eltype(grid)
U = ArrayType(dev, T, 0)(undef, ); CUDA.@allowscalar U[] = 0
@devzeros Dev T (grid.nx, grid.ny) q u v psi zeta
@devzeros Dev Complex{T} (grid.nkr, grid.nl) qh uh vh psih zetah
Vars(U, q, zeta, psi, u, v, qh, zetah, psih, uh, vh, nothing, nothing)
end
"""
ForcedVars(dev, grid)
Returns the vars for forced two-dimensional barotropic QG problem on device dev and with `grid`.
"""
function ForcedVars(dev::Dev, grid::AbstractGrid) where Dev
T = eltype(grid)
U = ArrayType(dev, T, 0)(undef, ); CUDA.@allowscalar U[] = 0
@devzeros Dev T (grid.nx, grid.ny) q u v psi zeta
@devzeros Dev Complex{T} (grid.nkr, grid.nl) qh uh vh psih zetah Fqh
return Vars(U, q, zeta, psi, u, v, qh, zetah, psih, uh, vh, Fqh, nothing)
end
"""
StochasticForcedVars(dev, grid)
Returns the vars for stochastically forced two-dimensional barotropic QG problem on device dev and with `grid`.
"""
function StochasticForcedVars(dev::Dev, grid::AbstractGrid) where Dev
T = eltype(grid)
U = ArrayType(dev, T, 0)(undef, ); CUDA.@allowscalar U[] = 0
@devzeros Dev T (grid.nx, grid.ny) q u v psi zeta
@devzeros Dev Complex{T} (grid.nkr, grid.nl) qh uh vh psih zetah Fqh prevsol
return Vars(U, q, zeta, psi, u, v, qh, zetah, psih, uh, vh, Fqh, prevsol)
end
# -------
# Solvers
# -------
function calcN_advection!(N, sol, t, clock, vars, params, grid)
# Note that U = sol[1, 1]. For all other elements ζ = sol
CUDA.@allowscalar vars.U[] = sol[1, 1].re
@. vars.zetah = sol
CUDA.@allowscalar vars.zetah[1, 1] = 0
@. vars.uh = im * grid.l * grid.invKrsq * vars.zetah
@. vars.vh = -im * grid.kr * grid.invKrsq * vars.zetah
ldiv!(vars.zeta, grid.rfftplan, vars.zetah)
ldiv!(vars.u, grid.rfftplan, vars.uh)
vars.psih .= vars.vh # FFTW's irfft destroys its input; vars.vh is needed for N[1, 1]
ldiv!(vars.v, grid.rfftplan, vars.psih)
@. vars.q = vars.zeta + params.eta
uq = vars.u # use vars.u as scratch variable
CUDA.@allowscalar @. uq = (vars.U[] + vars.u) * vars.q # (U+u)*q
vq = vars.v # use vars.v as scratch variable
@. vq *= vars.q # v*q
uqh = vars.uh # use vars.uh as scratch variable
mul!(uqh, grid.rfftplan, uq) # \hat{(u+U)*q}
# Nonlinear advection term for q (part 1)
@. N = -im * grid.kr * uqh # -∂[(U+u)q]/∂x
vqh = vars.uh # use vars.uh as scratch variable
mul!(vqh, grid.rfftplan, vq) # \hat{v*q}
# Nonlinear advection term for q (part 2)
@. N += - im * grid.l * vqh # -∂[vq]/∂y
return nothing
end
function calcN!(N, sol, t, clock, vars, params, grid)
calcN_advection!(N, sol, t, clock, vars, params, grid)
addforcing!(N, sol, t, clock, vars, params, grid)
if params.calcFU != nothingfunction
# 'Nonlinear' term for U with topographic correlation.
# Note: ⟨v*η⟩ = sum(conj(v̂)*η̂) / (nx²ny²) if fft is used,
# while ⟨v*η⟩ = 2 * sum(conj(v̂)*η̂) / (nx²ny²) if rfft is used
CUDA.@allowscalar N[1, 1] = params.calcFU(t) + 2 * sum(conj(vars.vh) .* params.etah).re / (grid.nx^2 * grid.ny^2)
end
return nothing
end
addforcing!(N, sol, t, clock, vars::Vars, params, grid) = nothing
function addforcing!(N, sol, t, clock, vars::ForcedVars, params, grid)
params.calcFq!(vars.Fqh, sol, t, clock, vars, params, grid)
@. N += vars.Fqh
return nothing
end
function addforcing!(N, sol, t, clock, vars::StochasticForcedVars, params, grid)
if t == clock.t # not a substep
@. vars.prevsol = sol # sol at previous time-step is needed to compute budgets for stochastic forcing
params.calcFq!(vars.Fqh, sol, t, clock, vars, params, grid)
end
@. N += vars.Fqh
return nothing
end
# ----------------
# Helper functions
# ----------------
"""
updatevars!(sol, vars, params, grid)
Update the variables in `vars` with the solution in `sol`.
"""
function updatevars!(sol, vars, params, grid)
CUDA.@allowscalar vars.U[] = sol[1, 1].re
@. vars.zetah = sol
CUDA.@allowscalar vars.zetah[1, 1] = 0.0
@. vars.psih = - vars.zetah * grid.invKrsq
@. vars.uh = - im * grid.l * vars.psih
@. vars.vh = im * grid.kr * vars.psih
ldiv!(vars.zeta, grid.rfftplan, deepcopy(vars.zetah))
ldiv!(vars.psi, grid.rfftplan, deepcopy(vars.psih))
ldiv!(vars.u, grid.rfftplan, deepcopy(vars.uh))
ldiv!(vars.v, grid.rfftplan, deepcopy(vars.vh))
@. vars.q = vars.zeta + params.eta
return nothing
end
updatevars!(prob) = updatevars!(prob.sol, prob.vars, prob.params, prob.grid)
"""
set_zeta!(prob, zeta)
set_zeta!(sol, vars, params, grid)
Set the solution `sol` as the transform of zeta and update variables `vars`
on the `grid`.
"""
function set_zeta!(sol, vars::Vars, params, grid, zeta)
mul!(vars.zetah, grid.rfftplan, zeta)
CUDA.@allowscalar vars.zetah[1, 1] = 0.0
@. sol = vars.zetah
updatevars!(sol, vars, params, grid)
return nothing
end
function set_zeta!(sol, vars::Union{ForcedVars, StochasticForcedVars}, params, grid, zeta)
CUDA.@allowscalar vars.U[] = deepcopy(sol[1, 1])
mul!(vars.zetah, grid.rfftplan, zeta)
CUDA.@allowscalar vars.zetah[1, 1] = 0.0
@. sol = vars.zetah
CUDA.@allowscalar sol[1, 1] = vars.U[]
updatevars!(sol, vars, params, grid)
return nothing
end
set_zeta!(prob, zeta) = set_zeta!(prob.sol, prob.vars, prob.params, prob.grid, zeta)
"""
set_U!(prob, U)
set_U!(sol, v, g, U)
Set the (kx, ky)=(0, 0) part of solution sol as the domain-average zonal flow U.
"""
function set_U!(sol, vars, params, grid, U::Float64)
CUDA.@allowscalar sol[1, 1] = U
updatevars!(sol, vars, params, grid)
return nothing
end
set_U!(prob, U::Float64) = set_U!(prob.sol, prob.vars, prob.params, prob.grid, U)
"""
energy(prob)
energy(sol, grid)
Returns the domain-averaged kinetic energy of solution `sol`.
"""
energy(sol, grid::AbstractGrid) = 0.5 * ( parsevalsum2(grid.kr .* grid.invKrsq .* sol, grid) + parsevalsum2(grid.l .* grid.invKrsq .* sol, grid) ) / (grid.Lx * grid.Ly)
energy(prob) = energy(prob.sol, prob.grid)
"""
enstrophy(prob)
enstrophy(sol, grid, vars)
Returns the domain-averaged enstrophy of solution `sol`.
"""
function enstrophy(sol, grid, vars)
@. vars.uh = sol
CUDA.@allowscalar vars.uh[1, 1] = 0
return 0.5*parsevalsum2(vars.uh, grid) / (grid.Lx * grid.Ly)
end
enstrophy(prob) = enstrophy(prob.sol, prob.grid, prob.vars)
"""
meanenergy(prob)
Returns the energy of the domain-averaged U.
"""
meanenergy(prob) = CUDA.@allowscalar real(0.5 * prob.sol[1, 1]^2)
"""
meanenstrophy(prob)
Returns the enstrophy of the domain-averaged U.
"""
meanenstrophy(prob) = CUDA.@allowscalar real(prob.params.β * prob.sol[1, 1])
"""
energy_dissipation(prob)
energy_dissipation(sol, vars, params, grid)
Returns the domain-averaged energy dissipation rate. nν must be >= 1.
"""
@inline function energy_dissipation(sol, vars, params, grid)
energy_dissipationh = vars.uh # use vars.uh as scratch variable
@. energy_dissipationh = params.ν * grid.Krsq^(params.nν-1) * abs2(sol)
CUDA.@allowscalar energy_dissipationh[1, 1] = 0
return 1 / (grid.Lx * grid.Ly) * parsevalsum(energy_dissipationh, grid)
end
@inline energy_dissipation(prob) = energy_dissipation(prob.sol, prob.vars, prob.params, prob.grid)
"""
enstrophy_dissipation(prob)
enstrophy_dissipation(sol, vars, params, grid)
Returns the domain-averaged enstrophy dissipation rate. nν must be >= 1.
"""
@inline function enstrophy_dissipation(sol, vars, params, grid)
enstrophy_dissipationh = vars.uh # use vars.uh as scratch variable
@. enstrophy_dissipationh = params.ν * grid.Krsq^params.nν * abs2(sol)
CUDA.@allowscalar enstrophy_dissipationh[1, 1] = 0
return 1 / (grid.Lx * grid.Ly) * parsevalsum(enstrophy_dissipationh, grid)
end
@inline enstrophy_dissipation(prob) = enstrophy_dissipation(prob.sol, prob.vars, prob.params, prob.grid)
"""
energy_work(prob)
energy_work(sol, vars, grid)
Returns the domain-averaged rate of work of energy by the forcing `Fqh`.
"""
@inline function energy_work(sol, vars::ForcedVars, grid)
energy_workh = vars.uh # use vars.uh as scratch variable
@. energy_workh = grid.invKrsq * sol * conj(vars.Fqh)
return 1 / (grid.Lx * grid.Ly) * parsevalsum(energy_workh, grid)
end
@inline function energy_work(sol, vars::StochasticForcedVars, grid)
energy_workh = vars.uh # use vars.uh as scratch variable
@. energy_workh = grid.invKrsq * (vars.prevsol + sol)/2 * conj(vars.Fqh) # Stratonovich
# @. energy_workh = grid.invKrsq * vars.prevsol * conj(vars.Fqh) # Ito
return 1 / (grid.Lx * grid.Ly) * parsevalsum(vars.uh, grid)
end
@inline energy_work(prob) = energy_work(prob.sol, prob.vars, prob.grid)
"""
enstrophy_work(prob)
enstrophy_work(sol, vars, grid)
Returns the domain-averaged rate of work of enstrophy by the forcing `Fqh`.
"""
@inline function enstrophy_work(sol, vars::ForcedVars, grid)
enstrophy_workh = vars.uh # use vars.uh as scratch variable
@. enstrophy_workh = sol * conj(vars.Fqh)
return 1 / (grid.Lx * grid.Ly) * parsevalsum(enstrophy_workh, grid)
end
@inline function enstrophy_work(sol, vars::StochasticForcedVars, grid)
enstrophy_workh = vars.uh # use vars.uh as scratch variable
@. enstrophy_workh = (vars.prevsol + sol) / 2 * conj(vars.Fqh) # Stratonovich
# @. enstrophy_workh = grid.invKrsq * vars.prevsol * conj(vars.Fh) # Ito
return 1 / (grid.Lx * grid.Ly) * parsevalsum(enstrophy_workh, grid)
end
@inline enstrophy_work(prob) = enstrophy_work(prob.sol, prob.vars, prob.grid)
"""
energy_drag(prob)
Returns the extraction of domain-averaged energy by drag μ.
"""
@inline function energy_drag(prob)
sol, vars, params, grid = prob.sol, prob.vars, prob.params, prob.grid
energy_dragh = vars.uh # use vars.uh as scratch variable
@. energy_dragh = params.μ * grid.invKrsq * abs2(sol)
CUDA.@allowscalar energy_dragh[1, 1] = 0
return 1 / (grid.Lx * grid.Ly) * parsevalsum(energy_dragh, grid)
end
"""
enstrophy_drag(prob)
Returns the extraction of domain-averaged enstrophy by drag/hypodrag μ.
"""
@inline function enstrophy_drag(prob)
sol, vars, params, grid = prob.sol, prob.vars, prob.params, prob.grid
enstrophy_dragh = vars.uh # use vars.uh as scratch variable
@. enstrophy_dragh = params.μ * abs2(sol)
CUDA.@allowscalar enstrophy_dragh[1, 1] = 0
return 1 / (grid.Lx * grid.Ly) * parsevalsum(enstrophy_dragh, grid)
end
end # module