Skip to content

Fr0do/cola

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Compositional Linear Algebra (CoLA)

Documentation tests codecov PyPI version Paper

CoLA is a framework for scalable linear algebra, automatically exploiting the structure often found in machine learning problems and beyond. CoLA supports both PyTorch and JAX.

Installation

pip install cola-ml

Features in CoLA

  • Large scale linear algebra routines for solve(A,b), eig(A), logdet(A), exp(A), trace(A), diag(A), sqrt(A).
  • Provides (user extendible) compositional rules to exploit structure through multiple dispatch.
  • Has memory-efficient autodiff rules for iterative algorithms.
  • Works with PyTorch or JAX, supporting GPU hardware acceleration.
  • Supports operators with complex numbers and low precision.
  • Provides linear algebra operations for both symmetric and non-symmetric matrices.

See https://cola.readthedocs.io/en/latest/ for our full documentation and many examples.

Quick start guide

  1. LinearOperators. The core object in CoLA is the LinearOperator. You can add and subtract them +, -, multiply by constants *, /, matrix multiply them @ and combine them in other ways: kron, kronsum, block_diag etc.
import jax.numpy as jnp
import cola

A = cola.ops.Diagonal(jnp.arange(5) + .1)
B = cola.ops.Dense(jnp.array([[2., 1.], [-2., 1.1], [.01, .2]]))
C = B.T @ B
D = C + 0.01 * cola.ops.I_like(C)
E = cola.ops.Kronecker(A, cola.ops.Dense(jnp.ones((2, 2))))
F = cola.ops.BlockDiag(E, D)

v = jnp.ones(F.shape[-1])
print(F @ v)
[0.2       0.2       2.2       2.2       4.2       4.2       6.2
 6.2       8.2       8.2       7.8121004 2.062    ]
  1. Performing Linear Algebra. With these objects we can perform linear algebra operations even when they are very big.
print(cola.linalg.trace(F))
Q = F.T @ F + 1e-3 * cola.ops.I_like(F)
b = cola.linalg.inv(Q) @ v
print(jnp.linalg.norm(Q @ b - v))
print(cola.linalg.eig(F)[0][:5])
print(cola.sqrt(A))
31.2701
0.0010193728
[ 2.0000000e-01+0.j  0.0000000e+00+0.j  2.1999998e+00+0.j
 -1.1920929e-07+0.j  4.1999998e+00+0.j]
diag([0.31622776 1.0488088  1.4491377  1.7606816  2.0248456 ])

For many of these functions, if we know additional information about the matrices we can annotate them to enable the algorithms to run faster.

Qs = cola.SelfAdjoint(Q)
%timeit cola.linalg.inv(Q) @ v
%timeit cola.linalg.inv(Qs) @ v
  1. JAX and PyTorch. We support both ML frameworks.
import torch

A = cola.ops.Dense(torch.Tensor([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))

import jax.numpy as jnp
A = cola.ops.Dense(jnp.array([[1., 2.], [3., 4.]]))
print(cola.linalg.trace(cola.kron(A, A)))
tensor(25.)
25.0

and both support autograd (and jit):

from jax import grad, jit, vmap

def myloss(x):
    A = cola.ops.Dense(jnp.array([[1., 2.], [3., x]]))
    return jnp.ones(2) @ cola.linalg.inv(A) @ jnp.ones(2)


g = jit(vmap(grad(myloss)))(jnp.array([.5, 10.]))
print(g)
[-0.06611571 -0.12499995]

Citing us

If you use CoLA, please cite the following paper:

Andres Potapczynski, Marc Finzi, Geoff Pleiss, and Andrew Gordon Wilson. "CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra." 2023.

@article{potapczynski2023cola,
  title={{CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra}},
  author={Andres Potapczynski and Marc Finzi and Geoff Pleiss and Andrew Gordon Wilson},
  journal={arXiv preprint arXiv:2309.03060},
  year={2023}
}

Features implemented

Linear Algebra inverse eig diag trace logdet exp sqrt f(A) SVD pseudoinverse
Implementation
LinearOperators Diag BlockDiag Kronecker KronSum Sparse Jacobian Hessian Fisher Concatenated Triangular FFT Tridiagonal
Implementation
Annotations SelfAdjoint PSD Unitary
Implementation

Contributing

See the contributing guidelines docs/CONTRIBUTING.md for information on submitting issues and pull requests.

CoLA is Apache 2.0 licensed.

Support and contact

Please raise an issue if you find a bug or slow performance when using CoLA.

About

Compositional Linear Algebra

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%