forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_rfe_digits.py
36 lines (28 loc) · 869 Bytes
/
plot_rfe_digits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""
=============================
Recursive feature elimination
=============================
A recursive feature elimination example showing the relevance of pixels in
a digit classification task.
.. note::
See also :ref:`example_plot_rfe_with_cross_validation.py`
"""
print(__doc__)
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt
# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target
# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)
# Plot pixel ranking
plt.matshow(ranking)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()