Skip to content

Commit

Permalink
Merge branch 'master' into gmt_put_strings
Browse files Browse the repository at this point in the history
  • Loading branch information
weiji14 committed Jul 14, 2020
2 parents 5c5f152 + f401f85 commit d7c3053
Show file tree
Hide file tree
Showing 5 changed files with 147 additions and 13 deletions.
80 changes: 80 additions & 0 deletions pygmt/clib/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
Functions to convert data types into ctypes friendly formats.
"""
import numpy as np
import pandas as pd

from ..exceptions import GMTInvalidInput

Expand Down Expand Up @@ -237,3 +238,82 @@ def kwargs_to_ctypes_array(argument, kwargs, dtype):
if argument in kwargs:
return dtype(*kwargs[argument])
return None


def array_to_datetime(array):
"""
Convert an 1d datetime array from various types into pandas.DatetimeIndex
(i.e., numpy.datetime64).
If the input array is not in legal datetime formats, raise a "ParseError"
exception.
Parameters
----------
array : list or 1d array
The input datetime array in various formats.
Supported types:
- str
- numpy.datetime64
- pandas.DateTimeIndex
- datetime.datetime and datetime.date
Returns
-------
array : 1d datetime array in pandas.DatetimeIndex (i.e., numpy.datetime64)
Examples
--------
>>> import datetime
>>> # numpy.datetime64 array
>>> x = np.array(
... ["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"],
... dtype="datetime64",
... )
>>> array_to_datetime(x)
DatetimeIndex(['2010-06-01 00:00:00', '2011-06-01 12:00:00',
'2012-01-01 12:34:56'],
dtype='datetime64[ns]', freq=None)
>>> # pandas.DateTimeIndex array
>>> x = pd.date_range("2013", freq="YS", periods=3)
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
DatetimeIndex(['2013-01-01', '2014-01-01', '2015-01-01'],
dtype='datetime64[ns]', freq='AS-JAN')
>>> # Python's built-in date and datetime
>>> x = [datetime.date(2018, 1, 1), datetime.datetime(2019, 1, 1)]
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
DatetimeIndex(['2018-01-01', '2019-01-01'],
dtype='datetime64[ns]', freq=None)
>>> # Raw datetime strings in various format
>>> x = [
... "2018",
... "2018-02",
... "2018-03-01",
... "2018-04-01T01:02:03",
... "5/1/2018",
... "Jun 05, 2018",
... "2018/07/02",
... ]
>>> array_to_datetime(x)
DatetimeIndex(['2018-01-01 00:00:00', '2018-02-01 00:00:00',
'2018-03-01 00:00:00', '2018-04-01 01:02:03',
'2018-05-01 00:00:00', '2018-06-05 00:00:00',
'2018-07-02 00:00:00'],
dtype='datetime64[ns]', freq=None)
>>> # Mixed datetime types
>>> x = [
... "2018-01-01",
... np.datetime64("2018-01-01"),
... datetime.datetime(2018, 1, 1),
... ]
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
DatetimeIndex(['2018-01-01', '2018-01-01', '2018-01-01'],
dtype='datetime64[ns]', freq=None)
"""
return pd.to_datetime(array)
39 changes: 27 additions & 12 deletions pygmt/clib/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
vectors_to_arrays,
dataarray_to_matrix,
as_c_contiguous,
array_to_datetime,
)

FAMILIES = [
Expand All @@ -48,12 +49,13 @@
REGISTRATIONS = ["GMT_GRID_PIXEL_REG", "GMT_GRID_NODE_REG"]

DTYPES = {
"float64": "GMT_DOUBLE",
"float32": "GMT_FLOAT",
"int64": "GMT_LONG",
"int32": "GMT_INT",
"uint64": "GMT_ULONG",
"uint32": "GMT_UINT",
np.float64: "GMT_DOUBLE",
np.float32: "GMT_FLOAT",
np.int64: "GMT_LONG",
np.int32: "GMT_INT",
np.uint64: "GMT_ULONG",
np.uint32: "GMT_UINT",
np.datetime64: "GMT_DATETIME",
}


Expand Down Expand Up @@ -708,15 +710,22 @@ def _check_dtype_and_dim(self, array, ndim):
True
"""
if array.dtype.name not in DTYPES:
raise GMTInvalidInput(
"Unsupported numpy data type '{}'.".format(array.dtype.name)
)
# check the array has the given dimension
if array.ndim != ndim:
raise GMTInvalidInput(
"Expected a numpy 1d array, got {}d.".format(array.ndim)
)
return self[DTYPES[array.dtype.name]]

# check the array has a valid/known data type
if array.dtype.type not in DTYPES:
try:
# Try to convert any unknown numpy data types to np.datetime64
array = np.asarray(array, dtype=np.datetime64)
except ValueError:
raise GMTInvalidInput(
"Unsupported numpy data type '{}'.".format(array.dtype.type)
)
return self[DTYPES[array.dtype.type]]

def put_vector(self, dataset, column, vector):
"""
Expand Down Expand Up @@ -762,7 +771,13 @@ def put_vector(self, dataset, column, vector):
)

gmt_type = self._check_dtype_and_dim(vector, ndim=1)
vector_pointer = vector.ctypes.data_as(ctp.c_void_p)
if gmt_type == self["GMT_DATETIME"]:
vector_pointer = (ctp.c_char_p * len(vector))()
vector_pointer[:] = np.char.encode(
np.datetime_as_string(array_to_datetime(vector))
)
else:
vector_pointer = vector.ctypes.data_as(ctp.c_void_p)
status = c_put_vector(
self.session_pointer, dataset, column, gmt_type, vector_pointer
)
Expand Down
Binary file added pygmt/tests/baseline/test_plot_datetime.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion pygmt/tests/test_clib_put.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def test_put_vector_invalid_dtype():
mode="GMT_CONTAINER_ONLY",
dim=[2, 3, 1, 0], # columns, rows, layers, dtype
)
data = np.array([37, 12, 556], dtype="complex128")
data = np.array([37, 12, 556], dtype="object")
with pytest.raises(GMTInvalidInput):
lib.put_vector(dataset, column=1, vector=data)

Expand Down
39 changes: 39 additions & 0 deletions pygmt/tests/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,13 @@
"""
Tests plot.
"""
import datetime
import os

import numpy as np
import pandas as pd
import xarray as xr

import pytest

from .. import Figure
Expand Down Expand Up @@ -284,3 +288,38 @@ def test_plot_scalar_xy():
fig.plot(x=0, y=0, style="t1c")
fig.plot(x=1.5, y=-1.5, style="s1c")
return fig


@pytest.mark.mpl_image_compare
def test_plot_datetime():
"""Test various datetime input data"""
fig = Figure()
fig.basemap(projection="X15c/5c", region="2010-01-01/2020-01-01/0/10", frame=True)

# numpy.datetime64 types
x = np.array(
["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"], dtype="datetime64"
)
y = [1.0, 2.0, 3.0]
fig.plot(x, y, style="c0.2c", pen="1p")

# pandas.DatetimeIndex
x = pd.date_range("2013", freq="YS", periods=3)
y = [4, 5, 6]
fig.plot(x, y, style="t0.2c", pen="1p")

# xarray.DataArray
x = xr.DataArray(data=pd.date_range(start="2015-03", freq="QS", periods=3))
y = [7.5, 6, 4.5]
fig.plot(x, y, style="s0.2c", pen="1p")

# raw datetime strings
x = ["2016-02-01", "2017-03-04T00:00"]
y = [7, 8]
fig.plot(x, y, style="a0.2c", pen="1p")

# the Python built-in datetime and date
x = [datetime.date(2018, 1, 1), datetime.datetime(2019, 1, 1)]
y = [8.5, 9.5]
fig.plot(x, y, style="i0.2c", pen="1p")
return fig

0 comments on commit d7c3053

Please sign in to comment.