|
17 | 17 | region = [-119.825, -119.4, 37.6, 37.825]
|
18 | 18 |
|
19 | 19 | grid = pygmt.datasets.load_earth_relief(resolution="03s", region=region)
|
20 |
| -grid_dist = pygmt.grd2xyz(grid=grid, outcols=2, output_type="numpy")[:, 0] |
| 20 | +grid_dist = pygmt.grd2xyz(grid=grid, output_type="pandas")["elevation"] |
21 | 21 |
|
22 | 22 | ###############################################################################
|
23 | 23 | # Plot the original digital elevation model and data distribution
|
|
68 | 68 |
|
69 | 69 | divisions = 9
|
70 | 70 | linear = pygmt.grdhisteq.equalize_grid(grid=grid, divisions=divisions)
|
71 |
| -linear_dist = pygmt.grd2xyz(grid=linear, outcols=2, output_type="numpy")[:, 0] |
| 71 | +linear_dist = pygmt.grd2xyz(grid=linear, output_type="pandas")["z"] |
72 | 72 |
|
73 | 73 | ###############################################################################
|
74 | 74 | # Calculate the bins used for data transformation
|
|
127 | 127 | # data are continuous rather than discrete.
|
128 | 128 |
|
129 | 129 | normal = pygmt.grdhisteq.equalize_grid(grid=grid, gaussian=True)
|
130 |
| -normal_dist = pygmt.grd2xyz(grid=normal, outcols=2, output_type="numpy")[:, 0] |
| 130 | +normal_dist = pygmt.grd2xyz(grid=normal, output_type="pandas")["z"] |
131 | 131 |
|
132 | 132 | ###############################################################################
|
133 | 133 | # Plot the normally distributed data
|
|
175 | 175 | quadratic = pygmt.grdhisteq.equalize_grid(
|
176 | 176 | grid=grid, quadratic=True, divisions=divisions
|
177 | 177 | )
|
178 |
| -quadratic_dist = pygmt.grd2xyz(grid=quadratic, outcols=2, output_type="numpy")[:, 0] |
| 178 | +quadratic_dist = pygmt.grd2xyz(grid=quadratic, output_type="pandas")["z"] |
179 | 179 |
|
180 | 180 | ###############################################################################
|
181 | 181 | # Calculate the bins used for data transformation
|
|
0 commit comments